All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Effective continuous acetone-butanol-ethanol production with full utilization of cassava by immobilized symbiotic TSH06

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22330%2F19%3A43918246" target="_blank" >RIV/60461373:22330/19:43918246 - isvavai.cz</a>

  • Result on the web

    <a href="https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-019-1561-1" target="_blank" >https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-019-1561-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1186/s13068-019-1561-1" target="_blank" >10.1186/s13068-019-1561-1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Effective continuous acetone-butanol-ethanol production with full utilization of cassava by immobilized symbiotic TSH06

  • Original language description

    Background Butanol production by fermentation has recently attracted increasingly more attention because of its mild reaction conditions and environmentally friendly properties. However, traditional feedstocks, such as corn, are food supplies for human beings and are expensive and not suitable for butanol production at a large scale. In this study, acetone, butanol, and ethanol (ABE) fermentation with non-pretreated cassava using a symbiotic TSH06 was investigated. Results In batch fermentation, the butanol concentration of 11.6 g/L was obtained with a productivity of 0.16 g/L/h, which was similar to that obtained from glucose system. A full utilization system of cassava was constructed to improve the fermentation performance, cassava flour was used as the substrate and cassava peel residue was used as the immobilization carrier. ABE fermentation with immobilized cells resulted in total ABE and butanol concentrations of 20 g/L and 13.3 g/L, which were 13.6% and 14.7% higher, respectively, than those of free cells. To further improve the solvent productivity, continuous fermentation was conducted with immobilized cells. In single-stage continuous fermentation, the concentrations of total ABE and butanol reached 9.3 g/L and 6.3 g/L with ABE and butanol productivities of 1.86 g/L/h and 1.26 g/L/h, respectively. In addition, both of the high product concentration and high solvent productivity were achieved in a three-stage continuous fermentation. The ABE productivity and concentration was 1.12 g/L/h and 16.8 g/L, respectively. Conclusions The results indicate that TSH06 could produce solvents from cassava effectively. This study shows that ABE fermentation with cassava as a substrate could be an efficient and economical method of butanol production.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20901 - Industrial biotechnology

Result continuities

  • Project

    <a href="/en/project/LTACH17006" target="_blank" >LTACH17006: Production of biobutanol and succinic/lactic acid from lignocellulose biomass</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Biotechnology for Biofuels

  • ISSN

    1754-6834

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    11

  • Pages from-to

    1-11

  • UT code for WoS article

    000486505700001

  • EID of the result in the Scopus database