Thorough Investigation of the Phenolic Profile of Reputable Greek Honey Varieties: Varietal Discrimination and Floral Markers Identification Using Liquid Chromatography–High-Resolution Mass Spectrometry
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22330%2F22%3A43925017" target="_blank" >RIV/60461373:22330/22:43925017 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.3390/molecules27144444" target="_blank" >https://doi.org/10.3390/molecules27144444</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/molecules27144444" target="_blank" >10.3390/molecules27144444</a>
Alternative languages
Result language
angličtina
Original language name
Thorough Investigation of the Phenolic Profile of Reputable Greek Honey Varieties: Varietal Discrimination and Floral Markers Identification Using Liquid Chromatography–High-Resolution Mass Spectrometry
Original language description
Honey is a highly consumed commodity due to its potential health benefits upon certain consumption, resulting in a high market price. This fact indicates the need to protect honey from fraudulent acts by delivering comprehensive analytical methodologies. In this study, targeted, suspect and non-targeted metabolomic workflows were applied to identify botanical origin markers of Greek honey. Blossom honey samples (n = 62) and the unifloral fir (n = 10), oak (n = 24), pine (n = 39) and thyme (n = 34) honeys were analyzed using an ultra-high-performance liquid chromatography hybrid quadrupole time-of-flight mass spectrometry (UHPLC-q-TOF-MS) system. Several potential authenticity markers were revealed from the application of different metabolomic workflows. In detail, based on quantitative targeted analysis, three blossom honey markers were found, namely, galangin, pinocembrin and chrysin, while gallic acid concentration was found to be significantly higher in oak honey. Using suspect screening workflow, 12 additional bioactive compounds were identified and semi-quantified, achieving comprehensive metabolomic honey characterization. Lastly, by combining non-targeted screening with advanced chemometrics, it was possible to discriminate thyme from blossom honey and develop binary discriminatory models with high predictive power. In conclusion, a holistic approach to assessing the botanical origin of Greek honey is presented, highlighting the complementarity of the three applied metabolomic approaches. © 2022 by the authors.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10406 - Analytical chemistry
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Molecules
ISSN
1420-3049
e-ISSN
1420-3049
Volume of the periodical
27
Issue of the periodical within the volume
14
Country of publishing house
CH - SWITZERLAND
Number of pages
17
Pages from-to
nestrankovano
UT code for WoS article
000833175900001
EID of the result in the Scopus database
2-s2.0-85135131740