All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Mesoskopické modelování vývoje morfologie částic polyolefinů

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F05%3A00014478" target="_blank" >RIV/60461373:22340/05:00014478 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    čeština

  • Original language name

    Mesoskopické modelování vývoje morfologie částic polyolefinů

  • Original language description

    The discrete element method (DEM) is employed for the modeling of processes occurring in the polymerization reactor. The first addressed problem is the filling of pores of the catalyst carrier by the polymer phase and its fragmentation in the early stageof particle growth. We investigate the influence of the resistance of the monomer transport to active sites located on the catalyst surface, the influence of the porous structure of the catalyst carrier and the influence of the polymerization temperature on the evolution of the fragmentation of the catalyst carrier. The second addressed problem is the disintegration and the agglomeration of impact polypropylene particles as the consequence of their collisions with the wall of the fluidized reactor or other equipment.

  • Czech name

    Mesoskopické modelování vývoje morfologie částic polyolefinů

  • Czech description

    The discrete element method (DEM) is employed for the modeling of processes occurring in the polymerization reactor. The first addressed problem is the filling of pores of the catalyst carrier by the polymer phase and its fragmentation in the early stageof particle growth. We investigate the influence of the resistance of the monomer transport to active sites located on the catalyst surface, the influence of the porous structure of the catalyst carrier and the influence of the polymerization temperature on the evolution of the fragmentation of the catalyst carrier. The second addressed problem is the disintegration and the agglomeration of impact polypropylene particles as the consequence of their collisions with the wall of the fluidized reactor or other equipment.

Classification

  • Type

    O - Miscellaneous

  • CEP classification

    CI - Industrial chemistry and chemical engineering

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GD104%2F03%2FH141" target="_blank" >GD104/03/H141: Reaction and transport phenomena in complex homogeneous and heterogeneous systems</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2005

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů