Stability Condition for Vertical Oscillation of 3-dim Heavy Spring Elastic Pendulum.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F08%3A00020729" target="_blank" >RIV/60461373:22340/08:00020729 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Stability Condition for Vertical Oscillation of 3-dim Heavy Spring Elastic Pendulum.
Original language description
Equations of motion for 3-dim heavy spring elastic pendulum are derived and rescaled to contain a single parameter. Condition for the stability of vertical large amplitude oscillations is derived analytically relating the parameter of the system and theamplitude of the vertical oscillation. Numerical continuation is used to find the border of the stability region in parameter space with high precision. The stability condition is approximated by a simple formula valid for a large range of the parameterand of the amplitude of oscillation. The bifurcation responsible for the loss of stability is identified.
Czech name
Podminka stability pro svisle kmity pruzneho kyvadla
Czech description
Odvodime pohybove rovnide trirozmerneho pruzneho kyvadla s tezkou pruzinou a zmenou meritka je prevedeme na tvar s jedinym parametrem. Odvodime podminku stability svislych kmitu analyticky. Numerickou kontinuaci najdeme hranici oblasti stability a nestability s libovolnou presnosti. Podminka stability bude aproximovana jednoduchym vztahem. Bude urcena bifurkace odpovedna za ztratu stability.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Regular and Chaotic Dynamics
ISSN
1560-3547
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
11
Pages from-to
—
UT code for WoS article
000256703300002
EID of the result in the Scopus database
—