Experimental validation studies on a multi-dimensional and multi-scale population balance model of batch granulation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F09%3A00021914" target="_blank" >RIV/60461373:22340/09:00021914 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Experimental validation studies on a multi-dimensional and multi-scale population balance model of batch granulation
Original language description
In this study, a dynamic model is presented for the granulation process, employing a three-dimensional Population balance framework. As a first attempt to account for the multi-scale character of the process, the nucleation and aggregation kernels used in the population balance model are derived using mechanistic representations of the underlying particle physics such as wetting kinetics and energy dissipation effects. Thus, the fundamental properties of the powder and the liquid were used as parametersin the model to predict the granulator dynamics and granule properties. The population balance model is validated against experimental data from a calcite/PVOH-H2O recipe obtained using a lab-scale drum granulator for granule size, fractional binder content and porosity. A reasonably good agreement between experimental and simulation results were obtained for the granule size distribution under different experimental conditions. In addition, accurate model predictions were made for the
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
CI - Industrial chemistry and chemical engineering
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Chemical Engineering Science
ISSN
0009-2509
e-ISSN
—
Volume of the periodical
64
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
11
Pages from-to
—
UT code for WoS article
000263773900015
EID of the result in the Scopus database
—