All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Experimental validation studies on a multi-dimensional and multi-scale population balance model of batch granulation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F09%3A00021914" target="_blank" >RIV/60461373:22340/09:00021914 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Experimental validation studies on a multi-dimensional and multi-scale population balance model of batch granulation

  • Original language description

    In this study, a dynamic model is presented for the granulation process, employing a three-dimensional Population balance framework. As a first attempt to account for the multi-scale character of the process, the nucleation and aggregation kernels used in the population balance model are derived using mechanistic representations of the underlying particle physics such as wetting kinetics and energy dissipation effects. Thus, the fundamental properties of the powder and the liquid were used as parametersin the model to predict the granulator dynamics and granule properties. The population balance model is validated against experimental data from a calcite/PVOH-H2O recipe obtained using a lab-scale drum granulator for granule size, fractional binder content and porosity. A reasonably good agreement between experimental and simulation results were obtained for the granule size distribution under different experimental conditions. In addition, accurate model predictions were made for the

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    CI - Industrial chemistry and chemical engineering

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2009

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chemical Engineering Science

  • ISSN

    0009-2509

  • e-ISSN

  • Volume of the periodical

    64

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    11

  • Pages from-to

  • UT code for WoS article

    000263773900015

  • EID of the result in the Scopus database