All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

First-principles calculation of ideal-gas thermodynamic properties of long-chain molecules by R1SM approach - Application to n -alkanes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F19%3A43918041" target="_blank" >RIV/60461373:22340/19:43918041 - isvavai.cz</a>

  • Result on the web

    <a href="https://aip.scitation.org/doi/10.1063/1.5093767" target="_blank" >https://aip.scitation.org/doi/10.1063/1.5093767</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.5093767" target="_blank" >10.1063/1.5093767</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    First-principles calculation of ideal-gas thermodynamic properties of long-chain molecules by R1SM approach - Application to n -alkanes

  • Original language description

    First-principles calculations, coupled with statistical thermodynamics, can provide ideal-gas thermodynamic properties but get complicated and less reliable with an increasing number of conformers. An approach designed for calculation of ideal-gas thermodynamic properties of long-chain molecules, R1SM, and its simplified version, sR1SM, is tested in this work by calculation of ideal-gas heat capacities and entropies for a homologous series of n-alkanes up to n-tetradecane. The R1SM approach incorporates the rigid rotor-harmonic oscillator approximation in combination with a correction for internal rotations of methyl tops using the one-dimensional hindered rotor scheme and the mixing model accounting for the population of conformers based on the Boltzmann distribution. The R1SM approach is applicable for compounds with up to hundreds of conformers, while the simplified sR1SM approach can be used for molecules with up to 105 conformers when coupled with rules for enumeration of stable conformers and estimation scheme for their energies. The obtained results for n-alkanes are compared with experimental values and previously employed computational schemes. As the conformational behavior and conformer energies are inherent parts of the proposed approaches, a thorough conformational study of n-alkanes is performed and compared with experiments and the Tasi rules for enumeration of n-alkane conformers. Finally, the standard uncertainty of the R1SM-calculated ideal-gas thermodynamic properties is estimated based on the error propagation from the used input quantities and approximations as well as on comparison to experimental values and amounts to less than 1% for both ideal-gas heat capacity and standard ideal-gas entropy. © 2019 Author(s).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/GA17-03875S" target="_blank" >GA17-03875S: Theoretical and experimental study of thermodynamic properties and phase behavior of molecular crystals</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Chemical Physics

  • ISSN

    0021-9606

  • e-ISSN

  • Volume of the periodical

    150

  • Issue of the periodical within the volume

    22

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    23

  • Pages from-to

  • UT code for WoS article

    000471692400014

  • EID of the result in the Scopus database

    2-s2.0-85067258396