Cohesive Properties of Ionic Liquids Calculated from First Principles
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F19%3A43918063" target="_blank" >RIV/60461373:22340/19:43918063 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1021/acs.jctc.9b00625" target="_blank" >https://doi.org/10.1021/acs.jctc.9b00625</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jctc.9b00625" target="_blank" >10.1021/acs.jctc.9b00625</a>
Alternative languages
Result language
angličtina
Original language name
Cohesive Properties of Ionic Liquids Calculated from First Principles
Original language description
Low volatility of ionic liquids (ILs), being one of their most valuable properties, is also the principal factor making reliable measurements of vapor pressures and vaporization (or sublimation) enthalpies of ILs extremely difficult. Alternatively, vaporization enthalpies at the temperature of the triple point can be obtained from the enthalpies of sublimation and fusion. While the latter can be obtained calorimetrically with a fair accuracy, the former is in principle accessible through ab initio computations. This work assesses the performance of the first-principles calculations of sublimation properties of ILs. Namely, 3 compounds, coupling the 1-ethyl-3-methylimidazolium cation [emIm] with either tetrafluoroborate [BF4], hexafluorophosphate [PF6], or bis(trifluoromethylsulfonyl)imide [NTf2] anions were selected for a case study. A computational methodology, originally developed for molecular crystals, is adopted for crystals of ILs. It exploits periodic density functional theory (DFT) calculations of the unit-cell geometries and quasi-harmonic phonons and many-body expansion schemes for ab initio refinements of the lattice energies of crystalline ILs. The vapor phase is treated as the ideal gas whose properties are obtained combining the rigid rotor-harmonic oscillator model with corrections from the one-dimensional hindered rotors and molecular-dynamics simulations capturing the contributions from the interionic interaction modes. Although the given computational approach enables one to reach the chemical accuracy (4 kJ mol-1) of calculated sublimation enthalpies of simple molecular crystals, reaching the same level of accuracy for ionic liquids proves challenging as crystals of ionic liquids are bound appreciably stronger than common molecular crystals, the underlying cohesive energies of solid ionic liquids is up to 1 order of magnitude larger. Still, combination of the mentioned computational and experimental frameworks results in a novel promising scheme that is expected to generate reliable and accurate temperature-dependent data on sublimation (and vaporization) of ILs. Copyright © 2019 American Chemical Society.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
<a href="/en/project/GJ19-04150Y" target="_blank" >GJ19-04150Y: Cohesive properties and phase equilibria of ionic liquids investigated by state of the art calculations and experiments</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Chemical Theory and Computation
ISSN
1549-9618
e-ISSN
—
Volume of the periodical
15
Issue of the periodical within the volume
10
Country of publishing house
US - UNITED STATES
Number of pages
16
Pages from-to
5563-5578
UT code for WoS article
000489678700034
EID of the result in the Scopus database
2-s2.0-85072639527