All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Membraneless polyester microdroplets as primordial compartments at the origins of life

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F19%3A43918701" target="_blank" >RIV/60461373:22340/19:43918701 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.pnas.org/content/116/32/15830.short" target="_blank" >https://www.pnas.org/content/116/32/15830.short</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1073/pnas.1902336116" target="_blank" >10.1073/pnas.1902336116</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Membraneless polyester microdroplets as primordial compartments at the origins of life

  • Original language description

    Compartmentalization was likely essential for primitive chemical systems during the emergence of life, both for preventing leakage of important components, i.e., genetic materials, and for enhancing chemical reactions. Although life as we know it uses lipid bilayer-based compartments, the diversity of prebiotic chemistry may have enabled primitive living systems to start from other types of boundary systems. Here, we demonstrate membraneless compartmentalization based on prebiotically available organic compounds, α-hydroxy acids (αHAs), which are generally copro-duced along with α-amino acids in prebiotic settings. Facile polymerization of αHAs provides a model pathway for the assembly of combinatorially diverse primitive compartments on early Earth. We characterized membraneless microdroplets generated from homo- and heteropolyesters synthesized from drying solutions of αHAs endowed with various side chains. These compartments can preferentially and differentially segregate and compartmentalize fluorescent dyes and fluorescently tagged RNA, providing readily available compartments that could have facilitated chemical evolution by protecting, exchanging, and encapsulating primitive components. Protein function within and RNA function in the presence of certain droplets is also preserved, suggesting the potential relevance of such droplets to various origins of life models. As a lipid amphiphile can also assemble around certain droplets, this further shows the droplets’ potential compatibility with and scaffolding ability for nascent biomolecular systems that could have coexisted in complex chemical systems. These model compartments could have been more accessible in a “messy” prebiotic environment, enabling the localization of a variety of protometabolic and replication processes that could be subjected to further chemical evolution before the advent of the Last Universal Common Ancestor. © 2019 National Academy of Sciences. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the National Academy of Sciences of the United States of America

  • ISSN

    0027-8424

  • e-ISSN

  • Volume of the periodical

    116

  • Issue of the periodical within the volume

    32

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    6

  • Pages from-to

    15830-15835

  • UT code for WoS article

    000478971900018

  • EID of the result in the Scopus database

    2-s2.0-85070222698