Rotational spectroscopic study and astronomical search for propiolamide in Sgr B2(N)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F21%3A43921961" target="_blank" >RIV/60461373:22340/21:43921961 - isvavai.cz</a>
Result on the web
<a href="https://www.aanda.org/articles/aa/full_html/2021/03/aa40211-20/aa40211-20.html" target="_blank" >https://www.aanda.org/articles/aa/full_html/2021/03/aa40211-20/aa40211-20.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/0004-6361/202040211" target="_blank" >10.1051/0004-6361/202040211</a>
Alternative languages
Result language
angličtina
Original language name
Rotational spectroscopic study and astronomical search for propiolamide in Sgr B2(N)
Original language description
Context. For all the amides detected in the interstellar medium (ISM), the corresponding nitriles or isonitriles have also been detected in the ISM, some of which have relatively high abundances. Among the abundant nitriles for which the corresponding amide has not yet been detected is cyanoacetylene (HCCCN), whose amide counterpart is propiolamide (HCCC(O)NH2). Aims. With the aim of supporting searches for this amide in the ISM, we provide a complete rotational study of propiolamide from 6 to 440 GHz. Methods. Time-domain Fourier transform microwave spectroscopy under supersonic expansion conditions between 6 and 18 GHz was used to accurately measure and analyze ground-state rotational transitions with resolved hyperfine structure arising from nuclear quadrupole coupling interactions of the 14N nucleus. We combined this technique with the frequency-domain room-temperature millimeter wave and submillimeter wave spectroscopies from 75 to 440 GHz in order to record and assign the rotational spectra in the ground state and in the low-lying excited vibrational states. We used the ReMoCA spectral line survey performed with the Atacama Large Millimeter/submillimeter Array toward the star-forming region Sgr B2(N) to search for propiolamide. Results. We identified and measured more than 5500 distinct frequency lines of propiolamide in the laboratory. These lines were fitted using an effective semi-rigid rotor Hamiltonian with nuclear quadrupole coupling interactions taken into consideration. We obtained accurate sets of spectroscopic parameters for the ground state and the three low-lying excited vibrational states. We report the nondetection of propiolamide toward the hot cores Sgr B2(N1S) and Sgr B2(N2). We find that propiolamide is at least 50 and 13 times less abundant than acetamide in Sgr B2(N1S) and Sgr B2(N2), respectively, indicating that the abundance difference between both amides is more pronounced by at least a factor of 8 and 2, respectively, than for their corresponding nitriles. Conclusions. Although propiolamide has yet to be included in astrochemical modeling networks, the observed upper limit to the ratio of propiolamide to acetamide seems consistent with the ratios of related species as determined from past simulations. The comprehensive spectroscopic data presented in this paper will aid future astronomical searches.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10406 - Analytical chemistry
Result continuities
Project
<a href="/en/project/GJ19-25116Y" target="_blank" >GJ19-25116Y: From laboratory to space: generation and spectroscopic characterization of interstellar molecules</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ASTRONOMY & ASTROPHYSICS
ISSN
0004-6361
e-ISSN
—
Volume of the periodical
647
Issue of the periodical within the volume
March 2021
Country of publishing house
FR - FRANCE
Number of pages
9
Pages from-to
"A55"
UT code for WoS article
000627403400001
EID of the result in the Scopus database
2-s2.0-85102344056