All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Conservative high-order time integration for lagrangian hydrodynamics

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F21%3A43923499" target="_blank" >RIV/60461373:22340/21:43923499 - isvavai.cz</a>

  • Result on the web

    <a href="https://epubs.siam.org/doi/epdf/10.1137/20M1314495" target="_blank" >https://epubs.siam.org/doi/epdf/10.1137/20M1314495</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/20M1314495" target="_blank" >10.1137/20M1314495</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Conservative high-order time integration for lagrangian hydrodynamics

  • Original language description

    This work develops novel time integration methods for the compressible Euler equations in the Lagrangian frame that are of arbitrary high order and exactly preserve the mass, momentum, and total energy of the system. The equations are considered in nonconservative form, that is, common for staggered grid hydrodynamics (SGH) methods; namely, the evolved quantities are mass, momentum, and internal energy. A general family of time integration schemes is formulated, and practical pairs for orders three and four are derived. Numerical results on standard hydrodynamics benchmarks confirm the high-order convergence on smooth problems and the exact numerical preservation of all physically conserved quantities. © 2021 Society for Industrial and Applied Mathematics.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Scientific Computing

  • ISSN

    1064-8275

  • e-ISSN

  • Volume of the periodical

    43

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    21

  • Pages from-to

    "A221"-"A241"

  • UT code for WoS article

    000623833100026

  • EID of the result in the Scopus database

    2-s2.0-85102711201