Vocal Folds Image Segmentation Based on YOLO Network
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F24%3A43930916" target="_blank" >RIV/60461373:22340/24:43930916 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-031-53549-9_15" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-53549-9_15</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-53549-9_15" target="_blank" >10.1007/978-3-031-53549-9_15</a>
Alternative languages
Result language
angličtina
Original language name
Vocal Folds Image Segmentation Based on YOLO Network
Original language description
The focus of this article is on utilizing YOLOv8 segmentation models for the detection of vocal fold openness in laryngoscopic videos, eliminating the need for extra image enhancement. The evaluation and comparison of different models are carried out based on accuracy metrics such as box mean average precision and mask mean average precision. The outcomes indicate the potential applicability of YOLOv8 segmentation models in objectively quantifying vocal fold openness, offering a potential avenue for integration into clinical practice. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Software Engineering Methods in Systems and Network Systems
ISBN
978-3-031-53548-2
ISSN
2367-3370
e-ISSN
2367-3389
Number of pages
9
Pages from-to
141-149
Publisher name
Springer Cham
Place of publication
Cham
Event location
Virtual, Online
Event date
Apr 12, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—