All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Liquid-jet photoemission spectroscopy as a structural tool: site-specific acid-base chemistry of vitamin C

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F24%3A43931074" target="_blank" >RIV/60461373:22340/24:43931074 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.rsc.org/en/content/articlelanding/2024/cp/d4cp01521e" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2024/cp/d4cp01521e</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/d4cp01521e" target="_blank" >10.1039/d4cp01521e</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Liquid-jet photoemission spectroscopy as a structural tool: site-specific acid-base chemistry of vitamin C

  • Original language description

    Liquid-jet photoemission spectroscopy (LJ-PES) directly probes the electronic structure of solutes and solvents. It also emerges as a novel tool to explore chemical structure in aqueous solutions, yet the scope of the approach has to be examined. Here, we present a pH-dependent liquid-jet photoelectron spectroscopic investigation of ascorbic acid (vitamin C). We combine core-level photoelectron spectroscopy and ab initio calculations, allowing us to site-specifically explore the acid-base chemistry of the biomolecule. For the first time, we demonstrate the capability of the method to simultaneously assign two deprotonation sites within the molecule. We show that a large change in chemical shift appears even for atoms distant several bonds from the chemically modified group. Furthermore, we present a highly efficient and accurate computational protocol based on a single structure using the maximum-overlap method for modeling core-level photoelectron spectra in aqueous environments. This work poses a broader question: to what extent can LJ-PES complement established structural techniques such as nuclear magnetic resonance? Answering this question is highly relevant in view of the large number of incorrect molecular structures published. Liquid-jet photoemission spectroscopy directly probes specific molecular structure of solutes.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PHYSICAL CHEMISTRY CHEMICAL PHYSICS

  • ISSN

    1463-9076

  • e-ISSN

    1463-9084

  • Volume of the periodical

    26

  • Issue of the periodical within the volume

    29

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    12

  • Pages from-to

    19673-19684

  • UT code for WoS article

    001261898700001

  • EID of the result in the Scopus database

    2-s2.0-85197562088