Portable and affordable cold air plasma source with optimized bactericidal effect
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F24%3A43931190" target="_blank" >RIV/60461373:22340/24:43931190 - isvavai.cz</a>
Result on the web
<a href="https://www.nature.com/articles/s41598-024-66017-w" target="_blank" >https://www.nature.com/articles/s41598-024-66017-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-024-66017-w" target="_blank" >10.1038/s41598-024-66017-w</a>
Alternative languages
Result language
angličtina
Original language name
Portable and affordable cold air plasma source with optimized bactericidal effect
Original language description
The paper reports a low-cost handheld source of a cold air plasma intended for biomedical applications that can be made by anyone (detailed technical information and a step-by-step guide for creating the NTP source are provided). The plasma source employs a 1.4 W corona discharge in the needle-to-cone electrode configuration and is an extremely simple device, consisting basically of two electrodes and a cheap power supply. To achieve the best bactericidal effect, the plasma source has been optimized on Escherichia coli. The bactericidal ability of the plasma source was further tested on a wide range of microorganisms: Staphylococcus aureus as a representative of gram-positive bacteria, Pseudomonas aeruginosa as gram-negative bacteria, Candida albicans as yeasts, Trichophyton interdigitale as microfungi, and Deinococcus radiodurans as a representative of extremophilic bacteria resistant to many DNA-damaging agents, including ultraviolet and ionizing radiation. The testing showed that the plasma source inactivates all the microorganisms tested in several minutes (up to 105-107 CFU depending on a microorganism), proving its effectiveness against a wide spectrum of pathogens, in particular microfungi, yeasts, gram-positive and gram-negative bacteria. Studies of long-lived reactive species such as ozone, nitrogen oxides, hydrogen peroxide, nitrite, and nitrate revealed a strong correlation between ozone and the bactericidal effect, indicating that the bactericidal effect should generally be attributed to reactive oxygen species. This is the first comprehensive study of the bactericidal effect of a corona discharge in air and the formation of long-lived reactive species by the discharge, depending on both the interelectrode distance and the discharge current.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10305 - Fluids and plasma physics (including surface physics)
Result continuities
Project
<a href="/en/project/GF21-39019L" target="_blank" >GF21-39019L: Decontamination of sensitive materials using cold atmospheric plasma technology for efficient and inexpensive elimination of epidemic viruses</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Scientific Reports
ISSN
2045-2322
e-ISSN
—
Volume of the periodical
14
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
19
Pages from-to
—
UT code for WoS article
001270506400098
EID of the result in the Scopus database
2-s2.0-85198102443