Forecasting cryptocurrencies volatility using statistical and machine learning methods: A comparative study
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61384399%3A31110%2F24%3A00059654" target="_blank" >RIV/61384399:31110/24:00059654 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S156849462301150X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S156849462301150X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.asoc.2023.111132" target="_blank" >10.1016/j.asoc.2023.111132</a>
Alternative languages
Result language
angličtina
Original language name
Forecasting cryptocurrencies volatility using statistical and machine learning methods: A comparative study
Original language description
Main topics of the document: machine learning; cryptocurrency; bitcoin; volatility; neural network; GARCH; HAR LASSO; SVR; LSTM
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
50206 - Finance
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Soft Computing
ISSN
1568-4946
e-ISSN
1872-9681
Volume of the periodical
151
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
21
Pages from-to
"nestrankovano"
UT code for WoS article
001137349000001
EID of the result in the Scopus database
2-s2.0-85180463854