Editable machine learning models? A rule-based framework for user studies of explainability
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61384399%3A31140%2F20%3A00055436" target="_blank" >RIV/61384399:31140/20:00055436 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s11634-020-00419-2" target="_blank" >https://link.springer.com/article/10.1007/s11634-020-00419-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11634-020-00419-2" target="_blank" >10.1007/s11634-020-00419-2</a>
Alternative languages
Result language
angličtina
Original language name
Editable machine learning models? A rule-based framework for user studies of explainability
Original language description
Main topics of the document: rule learning; user experiment; crowdsourcing; explainable artificial intelligence; cognitive computing; legal compliance
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Data Analysis and Classification
ISSN
1862-5347
e-ISSN
1862-5355
Volume of the periodical
14
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
15
Pages from-to
785-799
UT code for WoS article
000568584100001
EID of the result in the Scopus database
2-s2.0-85090933370