Multi-class classification of COVID-19 documents using machine learning algorithms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61384399%3A31140%2F23%3A00058422" target="_blank" >RIV/61384399:31140/23:00058422 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/content/pdf/10.1007/s10844-022-00768-8.pdf?pdf=button" target="_blank" >https://link.springer.com/content/pdf/10.1007/s10844-022-00768-8.pdf?pdf=button</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10844-022-00768-8" target="_blank" >10.1007/s10844-022-00768-8</a>
Alternative languages
Result language
angličtina
Original language name
Multi-class classification of COVID-19 documents using machine learning algorithms
Original language description
Main topics of the document: multi-class classification; machine learning algorithms; text mining; COVID-19
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of intelligent information systems
ISSN
0925-9902
e-ISSN
1573-7675
Volume of the periodical
60
Issue of the periodical within the volume
2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
21
Pages from-to
571-591
UT code for WoS article
000890098200001
EID of the result in the Scopus database
2-s2.0-85142923929