Uncoupled multireference state-specific Mukherjee's coupled cluster method with triexcitations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F10%3A00356821" target="_blank" >RIV/61388955:_____/10:00356821 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Uncoupled multireference state-specific Mukherjee's coupled cluster method with triexcitations
Original language description
We have developed the uncoupled version of multireference Mukherjee's coupled cluster method with connected triexcitations. The method has been implemented in ACES II program package. The agreement between the uncoupled and the standard version of Mukherjee's multireference coupled cluster method has been reported previously at the singles and doubles level by Das et al. [J. Mol. Struct.: THEOCHEM 79, 771 (2006); Chem. Phys. 349, 115 (2008)]. The aim of this article is to investigate this method further, in order to establish how its performance changes with the size of the basis set, size of the model space, multireference character of different molecules, and inclusion of connected triple excitations. Assessment of the new method has been performed on the singlet methylene, potential energy curve of fluorine molecule, and third b (1)Sigma(+)(g) electronic state of oxygen molecule.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
CF - Physical chemistry and theoretical chemistry
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Chemical Physics
ISSN
0021-9606
e-ISSN
—
Volume of the periodical
133
Issue of the periodical within the volume
13
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
—
UT code for WoS article
000282699800009
EID of the result in the Scopus database
—