Macroporous indium tin oxide electrode layers as conducting substrates for immobilization of bulky electroactive guests
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F14%3A00506901" target="_blank" >RIV/61388955:_____/14:00506901 - isvavai.cz</a>
Result on the web
<a href="http://hdl.handle.net/11104/0298039" target="_blank" >http://hdl.handle.net/11104/0298039</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.electacta.2014.05.046" target="_blank" >10.1016/j.electacta.2014.05.046</a>
Alternative languages
Result language
angličtina
Original language name
Macroporous indium tin oxide electrode layers as conducting substrates for immobilization of bulky electroactive guests
Original language description
Macroporous indium tin oxide (ITO) electrodes with a defined uniform pore size were prepared via direct co-assembly of ultra-small indium tin hydroxide (nano-ITOH) nanoparticles and poly(methyl methacrylate) (PMMA) beads. The use of nano-ITOH nanoparticles enables a facile large-scale fabrication of homogeneous crack-free coatings with good adhesion to the substrate, good optical quality and tunable thickness, which easily transform at 400 degrees C into crystalline ITO with similar morphology. Macroporous ITO films exhibit reasonably high electric conductivity of 4.0 +/- 0.3 S cm(-1) and open interconnected pores with a uniform size of ca. 300 nm, which makes them suitable conducting platforms for immobilization of bulky redox species or for deposition of functional electroactive layers. Deposition of functional semiconducting layers on the walls of the porous ITO scaffold was shown for titanium dioxide, which penetrates the ITO framework as shown by transmission electron microscopy (TEM) analysis of a cross-section. The obtained layers were used as conducting substrates for the immobilization of the heme proteins cytochrome c and hemoglobin, which demonstrate a direct electron transfer to the macroporous ITO electrode. Surface coverage of cytochrome c adsorbed on the macroporous ITO electrode is more than 12 times higher than on a planar one, reaching 400 pmol cm(-2) for a film of ca. 360 nm in thickness. Hemoglobin adsorbed on the macroporous ITO electrodes also demonstrates a noticeably high surface coverage of ca. 160 +/- 20 pmol cm(-2), which is roughly 7-10 times higher than the theoretical value for monolayer coverage. (C) 2014 Elsevier Ltd. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electrochimica acta
ISSN
0013-4686
e-ISSN
—
Volume of the periodical
140
Issue of the periodical within the volume
SEP 2014
Country of publishing house
GB - UNITED KINGDOM
Number of pages
8
Pages from-to
108-115
UT code for WoS article
000342528600016
EID of the result in the Scopus database
2-s2.0-84907968566