All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cubic scaling GW: Towards fast quasiparticle calculations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F16%3A00463526" target="_blank" >RIV/61388955:_____/16:00463526 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/16:10331005

  • Result on the web

    <a href="http://dx.doi.org/10.1103/PhysRevB.94.165109" target="_blank" >http://dx.doi.org/10.1103/PhysRevB.94.165109</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevB.94.165109" target="_blank" >10.1103/PhysRevB.94.165109</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cubic scaling GW: Towards fast quasiparticle calculations

  • Original language description

    Within the framework of the full potential projector-augmented wave methodology, we present a promising low-scaling GW implementation. It allows for quasiparticle calculations with a scaling that is cubic in the system size and linear in the number of k points used to sample the Brillouin zone. This is achieved by calculating the polarizability and self-energy in the real-space and imaginary-time domains. The transformation from the imaginary time to the frequency domain is done by an efficient discrete Fourier transformation with only a few nonuniform grid points. Fast Fourier transformations are used to go from real space to reciprocal space and vice versa. The analytic continuation from the imaginary to the real frequency axis is performed by exploiting Thiele's reciprocal difference approach. Finally, the method is applied successfully to predict the quasiparticle energies and spectral functions of typical semiconductors (Si, GaAs, SiC, and ZnO), insulators (C, BN, MgO, and LiF), and metals (Cu and SrVO3). The results are compared with conventional GW calculations. Good agreement is achieved, highlighting the strength of the present method.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    CF - Physical chemistry and theoretical chemistry

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physical Review B

  • ISSN

    2469-9950

  • e-ISSN

  • Volume of the periodical

    94

  • Issue of the periodical within the volume

    16

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

  • UT code for WoS article

    000385242800003

  • EID of the result in the Scopus database

    2-s2.0-84992051136