All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Spontaneous oxygen isotope exchange between carbon dioxide andnnatural clays: Refined rate constants referenced to TiO2 (anatase/rutile)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F17%3A00466724" target="_blank" >RIV/61388955:_____/17:00466724 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.clay.2016.11.031" target="_blank" >http://dx.doi.org/10.1016/j.clay.2016.11.031</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.clay.2016.11.031" target="_blank" >10.1016/j.clay.2016.11.031</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Spontaneous oxygen isotope exchange between carbon dioxide andnnatural clays: Refined rate constants referenced to TiO2 (anatase/rutile)

  • Original language description

    In a series of our previously published papers, we reported a broad range of experiments and theoretical studies devoted to the interaction of carbon dioxide with the anatase titania surface. In the current study, we demonstrate oxygen mobility between gaseous carbon dioxide and solid natural clay minerals. This surprising feature implies that such behaviour is typical not only for titania but also for oxides with different chemical composition and structure. The oxygen mobility was demonstrated by the interaction of isotopically labelled carbon dioxide – C18O2 – with the mineral surfaces. In most cases, we observed rapid oxygen exchange between the gas and the mineral. It was therefore discovered that carbon dioxide is more active than was previously thought because it exchanges its oxygen atoms with inorganic surfaces. Moreover, this feature seems to be very significant in natural clays of various compositions. This finding points not only towards high activity of CO2 but also towards high surface reactivity of clays, which are quite common surface minerals on Earth and other planets.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Clay Science

  • ISSN

    0169-1317

  • e-ISSN

  • Volume of the periodical

    137

  • Issue of the periodical within the volume

    MAR 2017

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    5

  • Pages from-to

    6-10

  • UT code for WoS article

    000393002300002

  • EID of the result in the Scopus database

    2-s2.0-85002976451