Ultrathin Buffer Layers of SnO2 by Atomic Layer Deposition: Perfect Blocking Function and Thermal Stability
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F17%3A00471281" target="_blank" >RIV/61388955:_____/17:00471281 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1021/acs.jpcc.6b09965" target="_blank" >http://dx.doi.org/10.1021/acs.jpcc.6b09965</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpcc.6b09965" target="_blank" >10.1021/acs.jpcc.6b09965</a>
Alternative languages
Result language
angličtina
Original language name
Ultrathin Buffer Layers of SnO2 by Atomic Layer Deposition: Perfect Blocking Function and Thermal Stability
Original language description
This study pinpoints the advantages of ultrathin electron 15 selective layers (ESL) of SnO2 fabricated by atomic layer deposition (ALD). These layers recently caught attention in planar perovskite solar cells and appear as powerful alternatives to other oxides such as TiO2. Here, we carry out a thorough characterization of the nature of these ultrathin ALD SnO2 layers providing a novel physical insight for the design of various photoelectrodes in perovskite and dye-sensitized solar cells and in photoelectrochemical water splitting. We use a combination of cyclic voltammetry, electrochemical impedance spectroscopy, Hall measurements, X-ray photoelectron spectroscopy, atomic force microscopy, and electron microscopy to analyze the blocking behavior and energetics of as-deposited (low-temperature) and also calcined ALD SnO2 layers. First, we find that the low-temperature ALD-grown SnO2 layers are amorphous and perfectly pinhole-free for thicknesses down to 2 run. This exceptional blocking behavior of thin ALD SnO2 layers allows photoelectrode designs with even thinner electron selective layers, thus potentially minimizing resistance losses. The compact nature and blocking function of thin SnO2 films are not perturbed by annealing at 450 degrees C, which is a significant benefit compared to other amorphous ALD oxides. Further on, we show that amorphous and crystalline ALD SnO2 films substantially differ in their Hatband (and conduction band) positions a finding to be taken into account when considering band alignment engineering in solar devices using these high-quality blocking layers.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Result continuities
Project
<a href="/en/project/GA13-07724S" target="_blank" >GA13-07724S: Materials engineering towards Innovative Graetzel solar cells</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physical Chemistry C
ISSN
1932-7447
e-ISSN
—
Volume of the periodical
121
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
342-350
UT code for WoS article
000392035500038
EID of the result in the Scopus database
2-s2.0-85014068752