All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Aqueous Solution Chemistry of Ammonium Cation in the Auger Time Window

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F17%3A00500331" target="_blank" >RIV/61388955:_____/17:00500331 - isvavai.cz</a>

  • Alternative codes found

    RIV/60461373:22340/17:43914360

  • Result on the web

    <a href="http://dx.doi.org/10.1038/s41598-017-00756-x" target="_blank" >http://dx.doi.org/10.1038/s41598-017-00756-x</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-017-00756-x" target="_blank" >10.1038/s41598-017-00756-x</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Aqueous Solution Chemistry of Ammonium Cation in the Auger Time Window

  • Original language description

    We report on chemical reactions triggered by core-level ionization of ammonium (NH4+) cation in aqueous solution. Based on a combination of photoemission experiments from a liquid microjet and high-level ab initio simulations, we identified simultaneous single and double proton transfer occurring on a very short timescale spanned by the Auger-decay lifetime. Molecular dynamics simulations indicate that the proton transfer to a neighboring water molecule leads to essentially complete formation of H3O+ (aq) and core-ionized ammonia (NH3+)* (aq) within the similar to 7 fs lifetime of the nitrogen 1s core hole. A second proton transfer leads to a transient structure with the proton shared between the remaining NH2 moiety and another water molecule in the hydration shell. These ultrafast proton transfers are stimulated by very strong hydrogen bonds between the ammonium cation and water. Experimentally, the proton transfer dynamics is identified from an emerging signal at the high-kinetic energy side of the Auger-electron spectrum in analogy to observations made for other hydrogen-bonded aqueous solutions. The present study represents the most pronounced charge separation observed upon core ionization in liquids so far.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

  • Volume of the periodical

    7

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

  • UT code for WoS article

    000398548500003

  • EID of the result in the Scopus database

    2-s2.0-85018745578