All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Evaluating arbitrary strain configurations and doping in graphene with Raman spectroscopy

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F18%3A00483996" target="_blank" >RIV/61388955:_____/18:00483996 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1088/2053-1583/aa90b3" target="_blank" >http://dx.doi.org/10.1088/2053-1583/aa90b3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/2053-1583/aa90b3" target="_blank" >10.1088/2053-1583/aa90b3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Evaluating arbitrary strain configurations and doping in graphene with Raman spectroscopy

  • Original language description

    The properties of graphene depend sensitively on strain and doping affecting its behavior in devices and allowing an advanced tailoring of this material. A knowledge of the strain configuration, i.e. the relative magnitude of the components of the strain tensor, is particularly crucial, because it governs effects like band-gap opening, pseudo-magnetic fields, and induced superconductivity. It also enters critically in the analysis of the doping level. We propose a method for evaluating unknown strain configurations and simultaneous doping in graphene using Raman spectroscopy. In our analysis we first extract the bare peak shift of the G and 2D modes by eliminating their splitting due to shear strain. The shifts from hydrostatic strain and doping are separated by a correlation analysis of the 2D and G frequencies, where we find Delta omega(2D)/Delta omega(G) = 2.21 +/- 0.05 for pure hydrostatic strain. We obtain the local hydrostatic strain, shear strain and doping without any assumption on the strain configuration prior to the analysis, as we demonstrate for two model cases: Graphene under uniaxial stress and graphene suspended on nanostructures that induce strain. Raman scattering with circular corotating polarization is ideal for analyzing frequency shifts, especially for weak strain when the peak splitting by shear strain cannot be resolved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    2D Materials

  • ISSN

    2053-1583

  • e-ISSN

  • Volume of the periodical

    5

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

  • UT code for WoS article

    000414649800001

  • EID of the result in the Scopus database

    2-s2.0-85040102863