All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Effect of Ge/Si substitutions on the local geometry of Si framework sites in zeolites: A combined high resolution<sup>29</sup>Si MAS NMR and DFT/MM study on zeolite Beta polymorph C (BEC)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F18%3A00488843" target="_blank" >RIV/61388955:_____/18:00488843 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.micromeso.2018.03.021" target="_blank" >http://dx.doi.org/10.1016/j.micromeso.2018.03.021</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.micromeso.2018.03.021" target="_blank" >10.1016/j.micromeso.2018.03.021</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Effect of Ge/Si substitutions on the local geometry of Si framework sites in zeolites: A combined high resolution<sup>29</sup>Si MAS NMR and DFT/MM study on zeolite Beta polymorph C (BEC)

  • Original language description

    We employed density functional theory/molecular mechanics (DFT/MM) calculations and 29 Si magic-angle spinning (MAS) NMR spectroscopy to investigate the effect of single and multiple Ge/Si substitutions on the 29 Si NMR parameters as well as the local geometry of SiO 4 tetrahedra of the nearest (Ge-O-Si) and next-nearest (Ge-O-Si-O-Si) neighboring Si atoms. The influences of the Ge/Si substitutions are compared with the effects of the corresponding Al/Si substitutions (i.e., Al-O-Si and Al-O-Si-O-Si, respectively). Zeolite Beta polymorph C (BEC), containing double four-membered rings (D4Rs) and exhibiting three distinguishable T sites in the framework, was chosen for this study as a model of germanium containing zeolites. Our computations give a systematic downshift of the 29 Si chemical shift of Si by 1–6 ppm for Ge-O-Si sequences. Furthermore, the contributions of two, three, and four Ge atom s as the nearest neighbors to the downshift of Si are not additive and the calculated downshifts lie in the intervals from 2 to 6 ppm, from 1 to 9 ppm, and from 5 to 11 ppm, respectively. Conversely, the contributions of two, three, and four Al atoms as the nearest neighbors are approximately additive. The downshifts caused by Ge nearest neighbors are less than half compared with the corresponding downshifts caused by Al. Moreover, our calculations show that there are no systematic contributions of Ge and Al as next-nearest neighbors (i.e., Ge-O-Si-O-Si and Al-O-Si-O-Si, respectively) to the 29 Si chemical shift of Si, and not even the direction (sign) can be predicted without calculating the corresponding sequence.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/GA15-14007S" target="_blank" >GA15-14007S: Active sites in zeolite catalysts. DFT and multi-spectroscopic analysis</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Microporous and Mesoporous Materials

  • ISSN

    1387-1811

  • e-ISSN

  • Volume of the periodical

    267

  • Issue of the periodical within the volume

    SEP 2018

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    10

  • Pages from-to

    124-133

  • UT code for WoS article

    000435060700015

  • EID of the result in the Scopus database

    2-s2.0-85044509771