All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hydrogenation of titanocene and zirconocene bis(trimethylsilyl)acetylene complexes

Result description

Reactions following the addition of dihydrogen under maximum atmospheric pressure to bis(trimethylsilyl) acetylene (BTMSA) complexes of titanocenes, [(η5-C5H5−nMen)2Ti(η2-BTMSA)] (n = 0, 1, 3, and 4) (1A–1D), and zirconocenes, [(η5-C5H5−nMen)2Zr(η2-BTMSA)] (n = 2–5) (4A–4D), proceeded in diverse waysnand, depending on the metal, afforded different products. The former complexes lost, in all cases, their BTMSA ligand via its hydrogenation to bis-1,2-(trimethylsilyl)ethane when reacted at 80 °C for a prolonged reaction time. For n = 0, 1, and 3, the titanocene species formed in situ dimerised via the formation of fulvalene ligands and two bridging hydride ligands, giving known green dimeric titanocenes (2A–2C). For n = 4, a titanocene hydride [(η5-C5HMe4)2TiH] (2D) was formed, similarly to the known [(η5-C5Me5)2TiH] (2E) for n = 5. However, in contrast to this example, 2D in the absence of dihydrogen spontaneously dehydrogenated to the known Ti(III)–Ti(III) dehydro-dimer [{Ti(η5-C5HMe4)(μ-η1:η5-C5Me4)}2] (3B). This complex has now been fully characterised via spectroscopic methods, and was shown through EPR spectroscopy to attain an intramolecular electronic triplet state. The zirconocene-BTMSA complexes 4A–4D reacted uniformly with one hydrogen molecule to give Zr(IV) zirconocene hydride alkenyls, [(η5-C5H5−nMen)2ZrH{C(SiMe3)vCH(SiMe3)}] (n = 2–5) (5A–5D). These were identified through their 1H and 13C NMR spectra, which show features typical of an agostically bonded proton, vCH(SiMe3). Compounds 5A–5D formed equilibria with the BTMSA complexes 4A–4D depending on hydrogen pressure andntemperature.

Keywords

X-Ray structurecarbon-monoxideacetylene complexes

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hydrogenation of titanocene and zirconocene bis(trimethylsilyl)acetylene complexes

  • Original language description

    Reactions following the addition of dihydrogen under maximum atmospheric pressure to bis(trimethylsilyl) acetylene (BTMSA) complexes of titanocenes, [(η5-C5H5−nMen)2Ti(η2-BTMSA)] (n = 0, 1, 3, and 4) (1A–1D), and zirconocenes, [(η5-C5H5−nMen)2Zr(η2-BTMSA)] (n = 2–5) (4A–4D), proceeded in diverse waysnand, depending on the metal, afforded different products. The former complexes lost, in all cases, their BTMSA ligand via its hydrogenation to bis-1,2-(trimethylsilyl)ethane when reacted at 80 °C for a prolonged reaction time. For n = 0, 1, and 3, the titanocene species formed in situ dimerised via the formation of fulvalene ligands and two bridging hydride ligands, giving known green dimeric titanocenes (2A–2C). For n = 4, a titanocene hydride [(η5-C5HMe4)2TiH] (2D) was formed, similarly to the known [(η5-C5Me5)2TiH] (2E) for n = 5. However, in contrast to this example, 2D in the absence of dihydrogen spontaneously dehydrogenated to the known Ti(III)–Ti(III) dehydro-dimer [{Ti(η5-C5HMe4)(μ-η1:η5-C5Me4)}2] (3B). This complex has now been fully characterised via spectroscopic methods, and was shown through EPR spectroscopy to attain an intramolecular electronic triplet state. The zirconocene-BTMSA complexes 4A–4D reacted uniformly with one hydrogen molecule to give Zr(IV) zirconocene hydride alkenyls, [(η5-C5H5−nMen)2ZrH{C(SiMe3)vCH(SiMe3)}] (n = 2–5) (5A–5D). These were identified through their 1H and 13C NMR spectra, which show features typical of an agostically bonded proton, vCH(SiMe3). Compounds 5A–5D formed equilibria with the BTMSA complexes 4A–4D depending on hydrogen pressure andntemperature.

  • Czech name

  • Czech description

Classification

  • Type

    Jimp - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Dalton Transactions

  • ISSN

    1477-9226

  • e-ISSN

  • Volume of the periodical

    47

  • Issue of the periodical within the volume

    27

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    12

  • Pages from-to

    8921-8932

  • UT code for WoS article

    000444186100010

  • EID of the result in the Scopus database

    2-s2.0-85049797030

Basic information

Result type

Jimp - Article in a specialist periodical, which is included in the Web of Science database

Jimp

OECD FORD

Physical chemistry

Year of implementation

2018