All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Carbon dioxide adsorption over amine modified silica: Effect of amine basicity and entropy factor on isosteric heats of adsorption

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F18%3A00492305" target="_blank" >RIV/61388955:_____/18:00492305 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.cej.2018.04.187" target="_blank" >http://dx.doi.org/10.1016/j.cej.2018.04.187</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cej.2018.04.187" target="_blank" >10.1016/j.cej.2018.04.187</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Carbon dioxide adsorption over amine modified silica: Effect of amine basicity and entropy factor on isosteric heats of adsorption

  • Original language description

    SBA-15 mesoporous silica was modified with 3-aminopropyl (AP), N-propyl ethylenediamine (DA) and N-propyl diethylenetriamine (TA) ligands. The prepared materials were characterized by thermogravimetry (TGA), small angle X-ray scattering (SAXS), nitrogen adsorption/desorption and transmission electron microscopy (HRTEM). The carbon dioxide adsorption/desorption experiments were performed at 273 K, 293 K, 313 K and 333 K. The adsorption capacity of CO2 at pressures below 2 kPa well correlates with number of amine centers in the respective ligand. Based on the adsorption isotherms, measured at different temperatures, the isosteric heats of adsorption (Q(st)) were calculated. The Q(st) values correlate with the basicity of the nitrogen atoms of respective amine ligands and their steric availability. The AP and DA ligands with the higher basicity of amine nitrogen showed the higher isosteric heats of adsorption at zero coverage (Q(st) = 72 kJ/mol), while TA ligand, with the lower basicity and steric availability of nitrogen atoms exhibited at zero coverage the lowest value of isosteric heat of adsorption (Q(st) = 40 kJ/mol). This low value shows, that in addition to amine basicity, also the entropic factor may influence the differences in isosteric heats of adsorption. While the mono-and diamine ligands loaded in the pores of SBA-15 are flexible enough to react with the carbon dioxide, the lower isosteric heats of adsorption of carbon dioxide over the TA ligands may be due to unfavorable entropic factor associated with filling of the pores of SBA-15 by bulkier TA ligands. Steric hindrance among TA ligands may result in lower flexibility of TA ligands and unfavor the formation of carbamates through intramolecular reaction in the pores of SBA-15.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/GBP106%2F12%2FG015" target="_blank" >GBP106/12/G015: Intelligent design of nanoporous adsorbents and catalysts</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chemical Engineering Journal

  • ISSN

    1385-8947

  • e-ISSN

  • Volume of the periodical

    348

  • Issue of the periodical within the volume

    SEP 2018

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    11

  • Pages from-to

    327-337

  • UT code for WoS article

    000434467000033

  • EID of the result in the Scopus database

    2-s2.0-85046694903