Beyond the classical thermodynamic contributions to hydrogen atom abstraction reactivity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F18%3A00495953" target="_blank" >RIV/61388955:_____/18:00495953 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1073/pnas.1806399115" target="_blank" >http://dx.doi.org/10.1073/pnas.1806399115</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1073/pnas.1806399115" target="_blank" >10.1073/pnas.1806399115</a>
Alternative languages
Result language
angličtina
Original language name
Beyond the classical thermodynamic contributions to hydrogen atom abstraction reactivity
Original language description
Hydrogen atom abstraction (HAA) reactions are cornerstones of chemistry. Various (metallo)enzymes performing the HAA catalysis evolved in nature and inspired the rational development of multiple synthetic catalysts. Still, the factors determining their catalytic efficiency are not fully understood. Herein, we define the simple thermodynamic factor η by employing two thermodynamic cycles: one for an oxidant (catalyst), along with its reduced, protonated, and hydrogenated form, and one for the substrate, along with its oxidized, deprotonated, and dehydrogenated form. It is demonstrated that η reflects the propensity of the substrate and catalyst for (a)synchronicity in concerted H+/e- transfers. As such, it significantly contributes to the activation energies of the HAA reactions, in addition to a classical thermodynamic (Bell-Evans-Polanyi) effect. In an attempt to understand the physicochemical interpretation of η, we discovered an elegant link between η and reorganization energy λ from Marcus theory. We discovered computationally that for a homologous set of HAA reactions, λ reaches its maximum for the lowest |η|, which then corresponds to the most synchronous HAA mechanism. This immediately implies that among HAA processes with the same reaction free energy, ΔG0, the highest barrier (≡ΔG≠) is expected for the most synchronous proton-coupled electron (i.e., hydrogen) transfer. As proof of concept, redox and acidobasic properties of nonheme FeIVO complexes are correlated with activation free energies for HAA from C-H and O-H bonds. We believe that the reported findings may represent a powerful concept in designing new HAA catalysts.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the National Academy of Science of the United Stated of America
ISSN
1091-6490
e-ISSN
—
Volume of the periodical
115
Issue of the periodical within the volume
44
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
"E10287"-"E10294"
UT code for WoS article
000448713200001
EID of the result in the Scopus database
2-s2.0-85055636055