All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Chemoselectivity in the Oxidation of Cycloalkenes with a Non-Heme Iron(IV)-Oxo-Chloride Complex: Epoxidation vs. Hydroxylation Selectivity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F19%3A00507769" target="_blank" >RIV/61388955:_____/19:00507769 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11310/19:10401437

  • Result on the web

    <a href="http://hdl.handle.net/11104/0298739" target="_blank" >http://hdl.handle.net/11104/0298739</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s13361-019-02251-1" target="_blank" >10.1007/s13361-019-02251-1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Chemoselectivity in the Oxidation of Cycloalkenes with a Non-Heme Iron(IV)-Oxo-Chloride Complex: Epoxidation vs. Hydroxylation Selectivity

  • Original language description

    We report and analyze chemoselectivity in the gas phase reactions of cycloalkenes (cyclohexene, cycloheptene, cis-cyclooctene, 1,4-cyclohexadiene) with a non-heme iron(IV)-oxo complex [(PyTACN)Fe(O)(Cl)]+, which models the active species in iron-dependent halogenases. Unlike in the halogenases, we did not observe any chlorination of the substrate. However, we observed two other reaction pathways: allylic hydrogen atom transfer (HAT) and alkene epoxidation. The HAT is clearly preferred in the case of 1,4-cyclohexadiene, both pathways have comparable reaction rates in reaction with cyclohexene, and epoxidation is strongly favored in reactions with cycloheptene and cis-cyclooctene. This preference for epoxidation differs from the reactivity of iron(IV)-oxo complexes in the condensed phase, where HAT usually prevails. To understand the observed selectivity, we analyze effects of the substrate, spin state, and solvation. Our DFT and CASPT2 calculations suggest that all the reactions occur on the quintet potential energy surface. The DFT-calculated energies of the transition states for the epoxidation and hydroxylation pathways explain the observed chemoselectivity. The SMD implicit solvation model predicts the relative increase of the epoxidation barriers with solvent polarity, which explains the clear preference of HAT in the condensed phase.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/GA18-13093S" target="_blank" >GA18-13093S: Radical catalysis of enzymatic and biomimetic polynuclear transition-metal active sites</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of the American Society for Mass Spectrometry

  • ISSN

    1044-0305

  • e-ISSN

  • Volume of the periodical

    30

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

    1923-1933

  • UT code for WoS article

    000491555700011

  • EID of the result in the Scopus database

    2-s2.0-85070377151