All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Vibrationally mediated photodissociation dynamics of pyrrole

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F19%3A00517109" target="_blank" >RIV/61388955:_____/19:00517109 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/19:10414683

  • Result on the web

    <a href="http://hdl.handle.net/11104/0302391" target="_blank" >http://hdl.handle.net/11104/0302391</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.5091974" target="_blank" >10.1063/1.5091974</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Vibrationally mediated photodissociation dynamics of pyrrole

  • Original language description

    We investigate photo dissociation of vibrationally excited pyrrole molecules in a velocity map imaging experiment with IR excitation of N-H bond stretching vibration v(1) = 1, nu(IR) = 3532 cm(-1), and UV photodissociation at lambda(UV) = 243 nm. In the IR+UV experiment, the H-fragment signal is enhanced with respect to the 243 nm UV-only photodissociation due to a more favorable Franck-Condon factor for the vibrationally excited molecule. In the measured H-fragment kinetic energy distribution, the maximum of the fast peak in the IR+UV experiment is shifted by 0.23 eV compared to the UV-only photodissociation which corresponds to 53 % of the vibrational energy deposited into the fragment kinetic energy. We compare our results with an isoenergetic UV-only photodissociation at lambda(UV) = 224 nm. About 72 % of the total available energy, is released into the fragment kinetic energy in the IR+UV experiment, while it is only 61 % in the UV-only photodissociation. This can be substantiated by the coupling of the N-H bond stretching vibration into the kinetic energy of the departing H-fragment. We also probe the time-dependent dynamics by a nanosecond pump-probe experiment. The IR excitation enhances the N-H bond dissociation even when the UV photodissociation is delayed by 150 ns. This enhancement increases also the yield of the fast fragments at the position of the peak corresponding to the IR+UV excitation, i.e. even 150 ns after the IR vibrational excitation, the same amount of the IR excitation energy can be converted into the H-fragment velocity as immediately after the excitation. (C) 2019 Author(s).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/GA17-04068S" target="_blank" >GA17-04068S: Molecular Clusters as Unique Nano-reactors: Controlling Chemistry with Photons and Electrons</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    AIP Advances

  • ISSN

    2158-3226

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    7

  • Pages from-to

    035151

  • UT code for WoS article

    000462880300099

  • EID of the result in the Scopus database

    2-s2.0-85064668307