Toward the efficient local tailored coupled cluster approximation and the peculiar case of oxo-Mn(Salen)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F19%3A00517569" target="_blank" >RIV/61388955:_____/19:00517569 - isvavai.cz</a>
Result on the web
<a href="http://hdl.handle.net/11104/0302897" target="_blank" >http://hdl.handle.net/11104/0302897</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.5110477" target="_blank" >10.1063/1.5110477</a>
Alternative languages
Result language
angličtina
Original language name
Toward the efficient local tailored coupled cluster approximation and the peculiar case of oxo-Mn(Salen)
Original language description
We introduce a new implementation of the coupled cluster method with single and double excitations tailored by the matrix product state wave functions (DMRG-TCCSD), which employs the local pair natural orbital (LPNO) approach. By exploiting locality in the coupled cluster stage of the calculation, we were able to remove some of the limitations that hindered the application of the canonical version of the method to larger systems and/or with larger basis sets. We assessed the accuracy of the approximation using two systems: tetramethyleneethane (TME) and oxo-Mn(Salen). Using the default cut-off parameters, we were able to recover over 99.7% and 99.8% of the canonical correlation energy for the triplet and singlet state of TME, respectively. In the case of oxo-Mn(Salen), we found that the amount of retrieved canonical correlation energy depends on the size of the complete active space (CAS)-we retrieved over 99.6% for the larger 27 orbital CAS and over 99.8% for the smaller 22 orbital CAS. The use of LPNO-TCCSD allowed us to perform these calculations up to quadruple-zeta basis set, amounting to 1178 basis functions. Moreover, we examined dependence of the ground state of oxo-Mn(Salen) on the CAS composition. We found that the inclusion of 4d(xy) orbital plays an important role in stabilizing the singlet state at the DMRG-CASSCF level via double-shell effect. However, by including dynamic correlation, the ground state was found to be triplet regardless of the size of the basis set or the composition of CAS, which is in agreement with previous findings by canonical DMRG-TCCSD in smaller basis.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Chemical Physics
ISSN
0021-9606
e-ISSN
—
Volume of the periodical
151
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
084112
UT code for WoS article
000483889300011
EID of the result in the Scopus database
2-s2.0-85071757222