All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Anomalous Freezing of Low-Dimensional Water Confined in Graphene Nanowrinkles

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F20%3A00534520" target="_blank" >RIV/61388955:_____/20:00534520 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/20:10421677

  • Result on the web

    <a href="http://hdl.handle.net/11104/0312703" target="_blank" >http://hdl.handle.net/11104/0312703</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acsnano.0c03161" target="_blank" >10.1021/acsnano.0c03161</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Anomalous Freezing of Low-Dimensional Water Confined in Graphene Nanowrinkles

  • Original language description

    Various properties of water are affected by confinement as the space-filling of the water molecules is very different from bulk water. In our study, we challenged the creation of a stable system in which water molecules are permanently locked in nanodimensional graphene traps. For that purpose, we developed a technique, nitrocellulose-assisted transfer of graphene grown by chemical vapor deposition, which enables capturing of the water molecules below an atomically thin graphene membrane structured into a net of regular wrinkles with a lateral dimension of about 4 nm. After successfully confining water molecules below a graphene monolayer, we employed cryogenic Raman spectroscopy to monitor the phase changes of the confined water as a function of the temperature. In our experiment system, the graphene monolayer structured into a net of fine wrinkles plays a dual role: (i) it enables water confinement and (ii) serves as an extremely sensitive probe for phase transitions involving water via graphene-based spectroscopic monitoring of the underlying water structure. Experimental findings were supported with classical and path integral molecular dynamics simulations carried out on our experimental system. Results of simulations show that surface premelting of the ice confined within the wrinkles starts at ∼200 K and the melting process is complete at ∼240 K, which is far below the melting temperature of bulk water ice. The processes correspond to changes in the doping and strain in the graphene tracked by Raman spectroscopy. We conclude that water can be confined between graphene structured into nanowrinkles and silica substrate and its phase transitions can be tracked via Raman spectral feature of the encapsulating graphene. Our study also demonstrated that peculiar behavior of liquids under spatial confinement can be inspected via the optical response of atomically thin graphene sensors.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACS Nano

  • ISSN

    1936-0851

  • e-ISSN

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

    15587-15594

  • UT code for WoS article

    000595533800101

  • EID of the result in the Scopus database

    2-s2.0-85095987260