Ion chemistry of phthalates in selected ion flow tube mass spectrometry: isomeric effects and secondary reactions with water vapour
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F20%3A00538067" target="_blank" >RIV/61388955:_____/20:00538067 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/20:10415415
Result on the web
<a href="http://hdl.handle.net/11104/0315890" target="_blank" >http://hdl.handle.net/11104/0315890</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d0cp00538j" target="_blank" >10.1039/d0cp00538j</a>
Alternative languages
Result language
angličtina
Original language name
Ion chemistry of phthalates in selected ion flow tube mass spectrometry: isomeric effects and secondary reactions with water vapour
Original language description
Phthalates are widely industrially used and their toxicity is of serious environmental and public health concern. Chemical ionization (CI) analytical techniques offer the potential to detect and monitor traces of phthalate vapours in air or sample headspace in real time. Promising techniques include selected ion flow tube mass spectrometry (SIFT-MS), proton transfer reaction mass spectrometry (PTR-MS) and ion mobility spectrometry (IMS). To facilitate such analyses, reactions of H3O+, O(2)(+)and NO(+)reagent ions with phthalate molecules need to be understood. Thus, the ion chemistry of dimethyl phthalate isomers (dimethyl phthalate, DMPortho, dimethyl isophthalate, DMIPmeta, dimethyl terephthalate, DMTPpara), diethyl phthalate (DEP), dipropyl phthalate (DPP) and dibutyl phthalate (DBP) was studied by SIFT-MS. Reactions of H3O+, O(2)(+)and NO(+)with these phthalate molecules M were found to produce the characteristic primary ion products MH+, M(+)and MNO+, respectively. In addition, a dissociation process forming the (M-OR)(+)fragment was observed. For phthalates with longer alkyl chains, mainly DPP and DBP, a secondary dissociation channel triggered by the McLafferty rearrangement was also observed. However, this is dominant only for the more energetic O(2)(+)reactions with phthalates, additionally resulting in a recognisable formation of the protonated phthalate anhydride. For the NO(+)reagent ions, the McLafferty rearrangement makes only a minor contribution and for H3O+, it was not observed. Experiments on the effect of water vapour on this ion chemistry have shown that protonated DMIP and DMTP efficiently associate with H2O forming the DMIP center dot H+H2O, DMIP center dot H+(H2O)(2)and DMTP center dot H+H2O cluster ions, whilst the protonatedorthoDMP isomer as well as otherorthophthalates DEP, DPP and DBP does not associate with H2O. The results indicate that the degree of hydration can be used to identify specific phthalate isomers in CI.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Chemistry Chemical Physics
ISSN
1463-9076
e-ISSN
—
Volume of the periodical
22
Issue of the periodical within the volume
28
Country of publishing house
GB - UNITED KINGDOM
Number of pages
8
Pages from-to
16345-16352
UT code for WoS article
000552193500051
EID of the result in the Scopus database
2-s2.0-85088681016