All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Ion chemistry of phthalates in selected ion flow tube mass spectrometry: isomeric effects and secondary reactions with water vapour

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F20%3A00538067" target="_blank" >RIV/61388955:_____/20:00538067 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/20:10415415

  • Result on the web

    <a href="http://hdl.handle.net/11104/0315890" target="_blank" >http://hdl.handle.net/11104/0315890</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/d0cp00538j" target="_blank" >10.1039/d0cp00538j</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Ion chemistry of phthalates in selected ion flow tube mass spectrometry: isomeric effects and secondary reactions with water vapour

  • Original language description

    Phthalates are widely industrially used and their toxicity is of serious environmental and public health concern. Chemical ionization (CI) analytical techniques offer the potential to detect and monitor traces of phthalate vapours in air or sample headspace in real time. Promising techniques include selected ion flow tube mass spectrometry (SIFT-MS), proton transfer reaction mass spectrometry (PTR-MS) and ion mobility spectrometry (IMS). To facilitate such analyses, reactions of H3O+, O(2)(+)and NO(+)reagent ions with phthalate molecules need to be understood. Thus, the ion chemistry of dimethyl phthalate isomers (dimethyl phthalate, DMPortho, dimethyl isophthalate, DMIPmeta, dimethyl terephthalate, DMTPpara), diethyl phthalate (DEP), dipropyl phthalate (DPP) and dibutyl phthalate (DBP) was studied by SIFT-MS. Reactions of H3O+, O(2)(+)and NO(+)with these phthalate molecules M were found to produce the characteristic primary ion products MH+, M(+)and MNO+, respectively. In addition, a dissociation process forming the (M-OR)(+)fragment was observed. For phthalates with longer alkyl chains, mainly DPP and DBP, a secondary dissociation channel triggered by the McLafferty rearrangement was also observed. However, this is dominant only for the more energetic O(2)(+)reactions with phthalates, additionally resulting in a recognisable formation of the protonated phthalate anhydride. For the NO(+)reagent ions, the McLafferty rearrangement makes only a minor contribution and for H3O+, it was not observed. Experiments on the effect of water vapour on this ion chemistry have shown that protonated DMIP and DMTP efficiently associate with H2O forming the DMIP center dot H+H2O, DMIP center dot H+(H2O)(2)and DMTP center dot H+H2O cluster ions, whilst the protonatedorthoDMP isomer as well as otherorthophthalates DEP, DPP and DBP does not associate with H2O. The results indicate that the degree of hydration can be used to identify specific phthalate isomers in CI.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physical Chemistry Chemical Physics

  • ISSN

    1463-9076

  • e-ISSN

  • Volume of the periodical

    22

  • Issue of the periodical within the volume

    28

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    8

  • Pages from-to

    16345-16352

  • UT code for WoS article

    000552193500051

  • EID of the result in the Scopus database

    2-s2.0-85088681016