Carbapenem-Resistant Klebsiella pneumoniae Clinical Isolates: In Vivo Virulence Assessment in Galleria mellonella and Potential Therapeutics by Polycationic Oligoethyleneimine
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F21%3A00537243" target="_blank" >RIV/61388955:_____/21:00537243 - isvavai.cz</a>
Result on the web
<a href="http://hdl.handle.net/11104/0314974" target="_blank" >http://hdl.handle.net/11104/0314974</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/antibiotics10010056" target="_blank" >10.3390/antibiotics10010056</a>
Alternative languages
Result language
angličtina
Original language name
Carbapenem-Resistant Klebsiella pneumoniae Clinical Isolates: In Vivo Virulence Assessment in Galleria mellonella and Potential Therapeutics by Polycationic Oligoethyleneimine
Original language description
Klebsiella pneumoniae, one of the most common pathogens found in hospital-acquired infections, is often resistant to multiple antibiotics. In fact, multidrug-resistant (MDR) K. pneumoniae producing KPC or OXA-48-like carbapenemases are recognized as a serious global health threat. In this sense, we evaluated the virulence of K. pneumoniae KPC(+) or OXA-48(+) aiming at potential antimicrobial therapeutics. K. pneumoniae carbapenemase (KPC) and the expanded-spectrum oxacillinase OXA-48 isolates were obtained from patients treated in medical care units in Lisbon, Portugal. The virulence potential of the K. pneumonia clinical isolates was tested using the Galleria mellonella model. For that, G. mellonella larvae were inoculated using patients KPC(+) and OXA-48(+) isolates. Using this in vivo model, the KPC(+) K. pneumoniae isolates showed to be, on average, more virulent than OXA-48(+). Virulence was found attenuated when a low bacterial inoculum (one magnitude lower) was tested. In addition, we also report the use of a synthetic polycationic oligomer (L-OEI-h) as a potential antimicrobial agent to fight infectious diseases caused by MDR bacteria. L-OEI-h has a broad-spectrum antibacterial activity and exerts a significantly bactericidal activity within the first 5-30 min treatment, causing lysis of the cytoplasmic membrane. Importantly, the polycationic oligomer showed low toxicity against in vitro models and no visible cytotoxicity (measured by survival and health index) was noted on the in vivo model (G. mellonella), thus L-OEI-h is foreseen as a promising polymer therapeutic for the treatment of MDR K. pneumoniae infections.n
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Antibiotics (Basel)
ISSN
2079-6382
e-ISSN
2079-6382
Volume of the periodical
10
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
14
Pages from-to
56
UT code for WoS article
000609772600001
EID of the result in the Scopus database
2-s2.0-85099464374