Photoinduced hole hopping through tryptophans in proteins
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F21%3A00541310" target="_blank" >RIV/61388955:_____/21:00541310 - isvavai.cz</a>
Alternative codes found
RIV/60461373:22340/21:43922688
Result on the web
<a href="http://hdl.handle.net/11104/0318888" target="_blank" >http://hdl.handle.net/11104/0318888</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1073/pnas.2024627118" target="_blank" >10.1073/pnas.2024627118</a>
Alternative languages
Result language
angličtina
Original language name
Photoinduced hole hopping through tryptophans in proteins
Original language description
Hole hopping through tryptophan/tyrosine chains enables rapid unidirectional charge transport over long distances. We have elucidated structural and dynamical factors controlling hopping speed and efficiency in two modified azurin constructs that include a rhenium(I) sensitizer, Re(His)(CO)3(dmp)+, and one or two tryptophans (W1, W2). Experimental kinetics investigations showed that the two closely spaced (3 to 4 Å) intervening tryptophans dramatically accelerated long-range electron transfer (ET) from CuIto the photoexcited sensitizer. In our theoretical work, we found that time-dependent density-functional theory (TDDFT) quantum mechanics/molecular mechanics/molecular dynamics (QM/MM/MD) trajectories of low-lying triplet excited states of ReI(His)(CO)3(dmp)+--W1(-W2) exhibited crossings between sensitizer-localized (∗Re) and charge-separated [ReI(His)(CO)3(dmp•-)/(W1•+or W2•+)] (CS1 or CS2) states. Our analysis revealed that the distances, angles, and mutual orientations of ET-active cofactors fluctuate in a relatively narrow range in which the cofactors are strongly coupled, enabling adiabatic ET. Waterdominated electrostatic field fluctuations bring ∗Re and CS1 states to a crossing where ∗Re(CO)3(dmp)+←W1ET occurs, and CS1 becomes the lowest triplet state. ET is promoted by solvation dynamics around ∗Re(CO)3(dmp)+(W1), and CS1 is stabilized by Re(dmp•-)/W1•+electron/hole interaction and enhanced W1•+solvation. The second hop, W1•+←W2, is facilitated by water fluctuations near the W1/W2unit, taking place when the electrostatic potential at W2drops well below that at W1•+. Insufficient solvation and reorganization around W2make W1•+←W2ET endergonic, shifting the equilibrium toward W1•+and decreasing the charge-separation yield. We suggest that multiscale TDDFT/ MM/MD is a suitable technique to model the simultaneous evolution of photogenerated excited-state manifolds.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
<a href="/en/project/LTAUSA18026" target="_blank" >LTAUSA18026: Photoactivation of protein redox sites</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the National Academy of Sciences of the United States of America
ISSN
0027-8424
e-ISSN
—
Volume of the periodical
118
Issue of the periodical within the volume
11
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
e2024627118
UT code for WoS article
000629635100086
EID of the result in the Scopus database
2-s2.0-85102389679