All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The effects of 4,7-di(pyrrolidin-1-yl) substituents on the reduction and oxidation mechanisms of 1,10-phenanthrolines: New perspectives in tailoring of phenantroline derivatives

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F21%3A00541424" target="_blank" >RIV/61388955:_____/21:00541424 - isvavai.cz</a>

  • Result on the web

    <a href="http://hdl.handle.net/11104/0318983" target="_blank" >http://hdl.handle.net/11104/0318983</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.electacta.2020.137674" target="_blank" >10.1016/j.electacta.2020.137674</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The effects of 4,7-di(pyrrolidin-1-yl) substituents on the reduction and oxidation mechanisms of 1,10-phenanthrolines: New perspectives in tailoring of phenantroline derivatives

  • Original language description

    The oxidation and reduction mechanisms of substituted 4,7-di(pyrrolidin-1-yl)-1,10-phenanthrolines were investigated in non-aqueous environment by means of cyclic voltammetry. Reduction of these derivatives leads to the formation of radical anion and subsequent reductive cleavage of pyrrolidine-1-yl moiety in overall ECE reduction processes. The regenerating formation of 1,10-phenanthroline was observed. IR spectroelectrochemistry and HPLC-MS/MS analysis were applied to support this result. The presence of pyrrolidine-1-yl moiety significantly thermodynamically facilitates the reduction of the 1,10phenanthroline structure. Concerning oxidation, the primarily formed cation radical on nitrogen of the pyrrolidine moiety is further oxidized and undergoes a coupled nucleophilic addition of water and hydroxylated compound is formed as the oxidation product. Additionally, further opening of pyrrolidine ring and oxidative cleavage of alkyl are other proposed reactions. The results presented in this work pave the way for novel chelating agents with electrochemically controlled polarity. Furthermore, reductive regeneration of individual components of the molecular assemblies described in this work opens new directions in electrochemical technologies for the environmental protection.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/GA19-03160S" target="_blank" >GA19-03160S: Electrochemical study on new artificial enzymes and their role in sensing of neurotransmitters</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Electrochimica acta

  • ISSN

    0013-4686

  • e-ISSN

    1873-3859

  • Volume of the periodical

    370

  • Issue of the periodical within the volume

    FEB 2021

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    8

  • Pages from-to

    137674

  • UT code for WoS article

    000623415400009

  • EID of the result in the Scopus database

    2-s2.0-85099311810