Water-Assisted Electron-Induced Chemistry of the Nanofabrication Precursor Iron Pentacarbonyl
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F21%3A00541661" target="_blank" >RIV/61388955:_____/21:00541661 - isvavai.cz</a>
Result on the web
<a href="http://hdl.handle.net/11104/0319193" target="_blank" >http://hdl.handle.net/11104/0319193</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpca.1c00135" target="_blank" >10.1021/acs.jpca.1c00135</a>
Alternative languages
Result language
angličtina
Original language name
Water-Assisted Electron-Induced Chemistry of the Nanofabrication Precursor Iron Pentacarbonyl
Original language description
Focused electron beam deposition often requires the use of purification techniques to increase the metal content of the respective deposit. One of the promising methods is adding H2O vapor as a reactive agent during the electron irradiation. However, various contrary effects of such addition have been reported depending on the experimental condition. We probe the elementary electron-induced processes that are operative in a heterogeneous system consisting of iron pentacarbonyl as an organometallic precursor and water. We use an electron beam of controlled energy that interacts with free mixed Fe(CO)(5)/H2O clusters. These mimic the heterogeneous system and, at the same time, allow direct mass spectrometric analysis of the reaction products. The anionic decomposition pathways are initiated by dissociative electron attachment (DEA), either to Fe(CO)(5) or to H2O. The former one proceeds mainly at low electron energies (<3 eV). Comparison of nonhydrated and hydrated conditions reveals that the presence of water actually stabilizes the ligands against dissociation. The latter one proceeds at higher electron energies (>6 eV), where the DEA to H2O forms OH- in the first reaction step. This intermediate reacts with Fe(CO)(5), leading to enhanced decomposition, with the desorption of up to three CO ligands. The present results demonstrate that the water action on Fe(CO)(5) decomposition is sensitive to the involved electron energy range and depends on the hydration degree.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
<a href="/en/project/EF16_026%2F0008382" target="_blank" >EF16_026/0008382: Carbon allotropes with rationalized nanointerfaces and nanolinks for environmental and biomedical applications</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physical Chemistry A
ISSN
1089-5639
e-ISSN
1520-5215
Volume of the periodical
125
Issue of the periodical within the volume
9
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
1919-1926
UT code for WoS article
000629168400014
EID of the result in the Scopus database
2-s2.0-85102907470