Determination of Zn Speciation, Siting, and Distribution in Ferrierite Using Luminescence and FTIR Spectroscopy
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F21%3A00542441" target="_blank" >RIV/61388955:_____/21:00542441 - isvavai.cz</a>
Alternative codes found
RIV/00216275:25310/21:39918081
Result on the web
<a href="http://hdl.handle.net/11104/0319851" target="_blank" >http://hdl.handle.net/11104/0319851</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpcc.1c00543" target="_blank" >10.1021/acs.jpcc.1c00543</a>
Alternative languages
Result language
angličtina
Original language name
Determination of Zn Speciation, Siting, and Distribution in Ferrierite Using Luminescence and FTIR Spectroscopy
Original language description
A methodology for the analysis of the siting of Zn2+ ions in extra-framework cationic sites of silicon-rich zeolite was developed and demonstrated on Zn-ferrierite samples (Si/Al 8.5, Zn/Al 0.04-0.33). This methodology is based on the FTIR spectroscopy of antisymmetric tetrahedral-octahedral-tetrahedral (T-O-T) vibrations of the zeolite framework perturbed by Zn2+ ions, combined with a complementary approach based on Zn2+ luminescence monitored by laser-induced time-resolved luminescence spectroscopy. Three vibration bands in the FTIR spectra of antisymmetric T-O-T vibrations of dehydrated zeolite reflect Zn2+ ligation in three extra-framework cationic sites of ferrierite zeolite. The band at 935 cm-1 corresponds to Zn2+ ions in the α-site of ferrierite, the band at 917 cm-1 correspondsto ions in β-site, and the band at 902 cm-1 correspondsto Zn2+ ions in the γ-site. The extinction coefficient for quantitative analysis of Zn2+ ions in cationic sites was estimated and exhibited the same value for Zn2+ cations in all cationic sites, ϵ = 49.1 ± 3.8 cm·μmol-1. In all Zn samples, Zn2+ siting in the β-site prevails, while Zn2+ ions in the γ-site are of low population or negligible. Time-resolved luminescence showed that bare Zn2+ ions in the extra-framework cationic sites can be distinguished from Zn2+ ions in ZnO by a decay time which is several magnitudes longer and a high sensitivity for quenching. The luminescence spectrum of Zn-ferrierites is composed of three bands at 545, 480, and 425 nm attributable to Zn2+ ions in the α-, β-, and γ-site with luminescence coefficients (for semiquantitative analysis) ζα = 10.1, ζβ = 9.4, and ζγ = 8.8 mmol/g of Zn2+ ions in the α-, β-, and γ-sites, respectively. The analysis of Zn ions in ferrierites showed that ZnH-ferrierites exclusively contain Zn2+ ions in cationic sites. In the case of the ZnNa-FER sample with maximum Zn loading (Zn/Al 0.33), a small amount of Zn-oxo species can be formed.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
<a href="/en/project/GA17-00742S" target="_blank" >GA17-00742S: Binuclear metal ion structures in zeolites</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physical Chemistry C
ISSN
1932-7447
e-ISSN
1932-7455
Volume of the periodical
125
Issue of the periodical within the volume
17
Country of publishing house
US - UNITED STATES
Number of pages
14
Pages from-to
9060-9073
UT code for WoS article
000648873500015
EID of the result in the Scopus database
2-s2.0-85105028927