Quantum Chemistry on Quantum Computers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F21%3A00545587" target="_blank" >RIV/61388955:_____/21:00545587 - isvavai.cz</a>
Result on the web
<a href="https://www.cond-mat.de/events/correl21/manuscripts/veis.pdf" target="_blank" >https://www.cond-mat.de/events/correl21/manuscripts/veis.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Quantum Chemistry on Quantum Computers
Original language description
An exact simulation of quantum systems, including those in quantum chemistry, on a classicalncomputer is computationally hard. The problem lies in the dimensionality of the Hilbert spacenneeded for the description of a studied system that in fact grows exponentially with the size ofnthis system, which is illustrated in Fig. 1. No matter if we simulate the dynamics or calculatensome static property, e.g. the energy, this limitation is always present. Richard Feynman camenup with an alternative to the classical simulation [1]. His idea was to convert the aforementionedndrawback of quantum systems into their benefit. He suggested to map the Hilbert space of anstudied quantum system on another one (both of them being exponentially large) and thus tonefficiently simulate one quantum system on another one (i.e. on a quantum computer).
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Simulating Correlations with Computers Modeling and Simulation
ISBN
978-3-95806-529-1
Number of pages of the result
31
Pages from-to
—
Number of pages of the book
358
Publisher name
Verlag des Forschungszentrum Jülich
Place of publication
Jülich
UT code for WoS chapter
—