All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Effect of Multiply Twinned Ag-(0) Nanoparticles on Photocatalytic Properties of TiO2 Nanosheets and TiO2 Nanostructured Thin Films

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F22%3A00556220" target="_blank" >RIV/61388955:_____/22:00556220 - isvavai.cz</a>

  • Alternative codes found

    RIV/68378271:_____/22:00556220 RIV/61388980:_____/22:00556220 RIV/67985858:_____/22:00556220 RIV/61389005:_____/22:00556220 RIV/44555601:13420/22:43897337

  • Result on the web

    <a href="http://hdl.handle.net/11104/0330510" target="_blank" >http://hdl.handle.net/11104/0330510</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/nano12050750" target="_blank" >10.3390/nano12050750</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Effect of Multiply Twinned Ag-(0) Nanoparticles on Photocatalytic Properties of TiO2 Nanosheets and TiO2 Nanostructured Thin Films

  • Original language description

    Ag-decorated TiO2 nanostructured materials are promising photocatalysts. We used non-standard cryo-lyophilization and ArF laser ablation methods to produce TiO2 nanosheets and TiO2 nanostructured thin films decorated with Ag nanoparticles. Both methods have a common advantage in that they provide a single multiply twinned Ag-(0) characterized by {111} twin boundaries. Advanced microscopy techniques and electron diffraction patterns revealed the formation of multiply twinned Ag-(0) structures at elevated temperatures (500 degrees C and 800 degrees C). The photocatalytic activity was demonstrated by the efficient degradation of 4-chlorophenol and Total Organic Carbon removal using Ag-TiO2 nanosheets, because the multiply twinned Ag-(0) served as an immobilized photocatalytically active center. Ag-TiO2 nanostructured thin films decorated with multiply twinned Ag-(0) achieved improved photoelectrochemical water splitting due to the additional induction of a plasmonic effect. The photocatalytic properties of TiO2 nanosheets and TiO2 nanostructured thin films were correlated with the presence of defect-twinned structures formed from Ag-(0) nanoparticles with a narrow size distribution, tuned to between 10 and 20 nm. This work opens up new possibilities for understanding the defects generated in Ag-TiO2 nanostructured materials and paves the way for connecting their morphology with their photocatalytic activity.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nanomaterials

  • ISSN

    2079-4991

  • e-ISSN

    2079-4991

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    24

  • Pages from-to

    750

  • UT code for WoS article

    000771674700001

  • EID of the result in the Scopus database