Kinetics of reactions of NH4+ with some biogenic organic molecules and monoterpenes in helium and nitrogen carrier gases: A potential reagent ion for selected ion flow tube mass spectrometry
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F22%3A00558892" target="_blank" >RIV/61388955:_____/22:00558892 - isvavai.cz</a>
Result on the web
<a href="http://hdl.handle.net/11104/0332388" target="_blank" >http://hdl.handle.net/11104/0332388</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/rcm.9328" target="_blank" >10.1002/rcm.9328</a>
Alternative languages
Result language
angličtina
Original language name
Kinetics of reactions of NH4+ with some biogenic organic molecules and monoterpenes in helium and nitrogen carrier gases: A potential reagent ion for selected ion flow tube mass spectrometry
Original language description
Rationale To assess the suitability of NH4+ as a reagent ion for trace gas analysis by selected ion flow tube mass spectrometry, SIFT-MS, its ion chemistry must be understood. Thus, rate coefficients and product ions for its reactions with typical biogenic molecules and monoterpenes need to be experimentally determined in both helium, He, and nitrogen, N-2, carrier gases. Methods NH4+ and H3O+ were generated in a microwave gas discharge through an NH3 and H2O vapour mixture and, after m/z selection, injected into He and N-2 carrier gas. Using the conventional SIFT method, NH4+ reactions were then studied with M, the biogenic molecules acetone, 1-propanol, 2-butenal, trans-2-heptenal, heptanal, 2-heptanone, 2,3-heptanedione and 15 monoterpene isomers to obtain rate coefficients, k, and product ion branching ratios. Polarisabilities and dipole moments of the reactant molecules and the enthalpy changes in proton transfer reactions were calculated using density functional theory. Results The k values for the reactions of the biogenic molecules were invariably faster in N-2 than in He but similar in both bath gases for the monoterpenes. Adducts NH4+M were the dominant product ions in He and N-2 for the biogenic molecules, whereas both MH+ and NH4+M product ions were observed in the monoterpene reactions. The monoterpene ratio correlating (R-2 = 0.7) with the proton affinity, PA, of the monoterpene molecule as calculated. The data indicate that this adduct ion formation is the result of bimolecular rather than termolecular association. Conclusions NH4+ can be a useful reagent ion for SIFT-MS analyses of molecules with PA(M) < PA(NH3) when the dominant single product ion is the adduct NH4+M. For molecules with PA(M) > PA(NH3), such as monoterpenes, both MH+ and NH4+M ions are likely products, which must be determined along with k by experiment.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
<a href="/en/project/GA21-25486S" target="_blank" >GA21-25486S: Selected ion flow drift tube mass spectrometry with negative ions and nitrogen carrier gas</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Rapid Communications in Mass Spectrometry
ISSN
0951-4198
e-ISSN
1097-0231
Volume of the periodical
36
Issue of the periodical within the volume
15
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
e9328
UT code for WoS article
000811538900001
EID of the result in the Scopus database
2-s2.0-85134179691