Molecular-level insight into uptake of dimethylamine on hydrated nitric acid clusters
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F22%3A00560607" target="_blank" >RIV/61388955:_____/22:00560607 - isvavai.cz</a>
Result on the web
<a href="https://hdl.handle.net/11104/0333468" target="_blank" >https://hdl.handle.net/11104/0333468</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d2ea00094f" target="_blank" >10.1039/d2ea00094f</a>
Alternative languages
Result language
angličtina
Original language name
Molecular-level insight into uptake of dimethylamine on hydrated nitric acid clusters
Original language description
Mixed nitric acid/water clusters with dimethylamine (DMA) represent a suitable model system for understanding acid–base chemistry in atmospherically relevant clusters. We investigate these clusters in a detailed molecular-beam experiment accompanied by ab initio calculations. The (HNO3)M(H2O)N clusters are produced by supersonic expansion into vacuum and doped by DMA molecules in a pickup process. Two complementary mass spectrometry approaches are employed to analyze the resulting (DMA)K(HNO3)M(H2O)N clusters: (i) electron impact ionization at 70 eV to form positive cluster ions and (ii) low-energy electron attachment at 0–10 eV to form negative clusters. The positive ion spectra contain mainly protonated (DMA)k(HNO3)mH+ clusters with k = m + 1, whereas the negative ones are dominated by (DMA)k(HNO3)mNO−3 with m ≥ k, followed by (DMA)k(HNO3)mNO2− (m > k) ions with low abundances. These observations are rationalized by our calculations, which exhibit the tendency of the mixed clusters to maximize the number DMA·H+ and NO3− ions in the clusters. In the neutral clusters, this is fulfilled for 1 : 1 ratio of DMA and HNO3, while the positively charged (DMA)k(HNO3)mH+ clusters satisfy this condition for k = m + 1. The protonated clusters always contain the DMA·H+ moiety. For the negatively charged cluster ions, thermochemistry supports the prevailing formation of NO−3 and m ≥ k ion composition. Furthermore, the NO−3-containing cluster ions can form when an electron attaches to the protonated moiety of the DMA·H+⋯NO−3 ion pair in the cluster, which leads to H atom evaporation. From the gas phase HNO3 molecule, where NO−2 is formed exclusively upon an electron attachment, the tendency to form NO−3 increases to hydrated HNO3 clusters, where both NO−2 and NO−3 ions are generated in approximately equal abundances, to the DMA doped clusters, where NO−3 strongly prevails NO−2.n
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
<a href="/en/project/GA21-07062S" target="_blank" >GA21-07062S: Clusters of PAHs in Laboratory Research of Astrochemical and Atmospherical Processes</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Environmental Science: Atmospheres
ISSN
2634-3606
e-ISSN
—
Volume of the periodical
2
Issue of the periodical within the volume
AUG 2022
Country of publishing house
GB - UNITED KINGDOM
Number of pages
11
Pages from-to
1292-1302
UT code for WoS article
000850243000001
EID of the result in the Scopus database
2-s2.0-85138591103