All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Mutual information prediction for strongly correlated systems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F23%3A00566845" target="_blank" >RIV/61388955:_____/23:00566845 - isvavai.cz</a>

  • Result on the web

    <a href="https://hdl.handle.net/11104/0338119" target="_blank" >https://hdl.handle.net/11104/0338119</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cplett.2023.140297" target="_blank" >10.1016/j.cplett.2023.140297</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Mutual information prediction for strongly correlated systems

  • Original language description

    We have trained a new machine-learning (ML) model which predicts mutual information (MI) for strongly correlated systems. This is a complex quantity, which is much more difficult to predict than one-site entropies, but carries important information about the correlation structure inside electronic systems. In this work, we replaced the expensive density matrix renormalization group (DMRG) calculations by newly trained ML model for prediction of the mutual information. We show the performance of the model on two important tasks: (a) to determine the correlation structure and (b) to determine ordering of orbitals for accurate DMRG calculations. The results are compared with the MI obtained from accurate DMRG calculations.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/GJ19-13126Y" target="_blank" >GJ19-13126Y: Deep learning for strongly correlated systems in quantum chemistry</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chemical Physics Letters

  • ISSN

    0009-2614

  • e-ISSN

    1873-4448

  • Volume of the periodical

    813

  • Issue of the periodical within the volume

    FEB 2023

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    7

  • Pages from-to

    140297

  • UT code for WoS article

    001035794700001

  • EID of the result in the Scopus database

    2-s2.0-85145854789