Mutual information prediction for strongly correlated systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F23%3A00566845" target="_blank" >RIV/61388955:_____/23:00566845 - isvavai.cz</a>
Result on the web
<a href="https://hdl.handle.net/11104/0338119" target="_blank" >https://hdl.handle.net/11104/0338119</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cplett.2023.140297" target="_blank" >10.1016/j.cplett.2023.140297</a>
Alternative languages
Result language
angličtina
Original language name
Mutual information prediction for strongly correlated systems
Original language description
We have trained a new machine-learning (ML) model which predicts mutual information (MI) for strongly correlated systems. This is a complex quantity, which is much more difficult to predict than one-site entropies, but carries important information about the correlation structure inside electronic systems. In this work, we replaced the expensive density matrix renormalization group (DMRG) calculations by newly trained ML model for prediction of the mutual information. We show the performance of the model on two important tasks: (a) to determine the correlation structure and (b) to determine ordering of orbitals for accurate DMRG calculations. The results are compared with the MI obtained from accurate DMRG calculations.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
<a href="/en/project/GJ19-13126Y" target="_blank" >GJ19-13126Y: Deep learning for strongly correlated systems in quantum chemistry</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Chemical Physics Letters
ISSN
0009-2614
e-ISSN
1873-4448
Volume of the periodical
813
Issue of the periodical within the volume
FEB 2023
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
7
Pages from-to
140297
UT code for WoS article
001035794700001
EID of the result in the Scopus database
2-s2.0-85145854789