Electron-triggered processes in halogenated carboxylates: Dissociation pathways in CF3COCl and its clusters
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F24%3A00581754" target="_blank" >RIV/61388955:_____/24:00581754 - isvavai.cz</a>
Result on the web
<a href="https://hdl.handle.net/11104/0349909" target="_blank" >https://hdl.handle.net/11104/0349909</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/D3CP05387C" target="_blank" >10.1039/D3CP05387C</a>
Alternative languages
Result language
angličtina
Original language name
Electron-triggered processes in halogenated carboxylates: Dissociation pathways in CF3COCl and its clusters
Original language description
Trifluoroacetyl chloride, CF3COCl, is produced in the Earth’s atmosphere by photooxidative degradation of hydrochlorofluorocarbons, and represents a potential source of highly reactive halogen radicals. Despite considerable insight obtained into photochemistry of CF3COCl, its reactivity towards electrons has not been addressed so far. We investigate the electron ionization and attachment in isolated CF3COCl molecules and (CF3COCl)N , max. N ≥ 10, clusters using a molecular beam experiment combined with quantum chemical calculations. The ionization of the molecule at 70 eV electron energy leads to a strong fragmentation: weakening of C–C bond yields the CF3+ and COCl+ ions, while the fission of C–Cl bond produces the major CF3CO+ fragment ion. The cluster spectra are dominated by Mn·COCl+ and Mn·CF3CO+ ions (M = CF3COCl). The electron attachment at energies between 1.5–11 eV also leads to the dissociation of the molecule breaking either C–Cl bond at low energies below 3 eV yielding mainly Cl− ion, or dissociating the C–C bond at higher energies above 4 eV leading mainly to CF3− ion. In the clusters, the intact M− n ions are stabilized after the electron attachment at low energies with a contribution of Mn·Cl− fragment ions. At the higher energies, the Mn·Cl− fragments dominate the spectra, and C–C bond dissociation occurs as well yielding Mn·CF3− . Interestingly, Mn·Cl2− ions appear in the spectra at higher energies. We briefly discuss possible atmospheric implications.n
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Chemistry Chemical Physics
ISSN
1463-9076
e-ISSN
1463-9084
Volume of the periodical
26
Issue of the periodical within the volume
6
Country of publishing house
GB - UNITED KINGDOM
Number of pages
9
Pages from-to
5640-5648
UT code for WoS article
001153945000001
EID of the result in the Scopus database
2-s2.0-85184060846