Dynamical Dimension to the Hofmeister Series: Insights from First-Principles Simulations
Result description
A systematic characterization of the competing kosmotropic and chaotropic effects of a series of divalent salts on the aqueous H-bonding structure by means of first-principles molecular dynamics simulations is presented. The structural properties are quantified by means of experimental and computed (HNMR)-H-1 chemical shifts, whereby the local environments of cations and anions can be discriminated. Complementary to the well-established structural features, a dynamical aspect is added to the concept of kosmotropes and chaotropes. The H-bond dynamics, quantified in terms of the H-bonding autocorrelation functions, shows a good correlation with the structural kosmotropic and chaotropic modifications, which are commonly referred to as the Hofmeister series. The considerably enhanced (reduced) fluctuations of the H-bonding network in the hydration shells around the anions (cations) are a complementary dynamical dimension to the concept of kosmotropic/chaotropic behavior of solvated ions.
Keywords
Hofmeister serieshydrogen bondsion pairsmolecular dynamicsNMR spectroscopy
The result's identifiers
Result code in IS VaVaI
Result on the web
DOI - Digital Object Identifier
Alternative languages
Result language
angličtina
Original language name
Dynamical Dimension to the Hofmeister Series: Insights from First-Principles Simulations
Original language description
A systematic characterization of the competing kosmotropic and chaotropic effects of a series of divalent salts on the aqueous H-bonding structure by means of first-principles molecular dynamics simulations is presented. The structural properties are quantified by means of experimental and computed (HNMR)-H-1 chemical shifts, whereby the local environments of cations and anions can be discriminated. Complementary to the well-established structural features, a dynamical aspect is added to the concept of kosmotropes and chaotropes. The H-bond dynamics, quantified in terms of the H-bonding autocorrelation functions, shows a good correlation with the structural kosmotropic and chaotropic modifications, which are commonly referred to as the Hofmeister series. The considerably enhanced (reduced) fluctuations of the H-bonding network in the hydration shells around the anions (cations) are a complementary dynamical dimension to the concept of kosmotropic/chaotropic behavior of solvated ions.
Czech name
—
Czech description
—
Classification
Type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
CF - Physical chemistry and theoretical chemistry
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ChemPhysChem
ISSN
1439-4235
e-ISSN
—
Volume of the periodical
17
Issue of the periodical within the volume
8
Country of publishing house
DE - GERMANY
Number of pages
8
Pages from-to
1166-1173
UT code for WoS article
000374689100013
EID of the result in the Scopus database
2-s2.0-84958618404
Basic information
Result type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP
CF - Physical chemistry and theoretical chemistry
Year of implementation
2016