All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The benchmark of P-31 NMR parameters in phosphate: a case study on structurally constrained and flexible phosphate

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F17%3A00483858" target="_blank" >RIV/61388963:_____/17:00483858 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21230/17:00317371 RIV/00216208:11320/17:10378304

  • Result on the web

    <a href="http://pubs.rsc.org/en/content/articlepdf/2017/cp/c7cp06969c" target="_blank" >http://pubs.rsc.org/en/content/articlepdf/2017/cp/c7cp06969c</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/c7cp06969c" target="_blank" >10.1039/c7cp06969c</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The benchmark of P-31 NMR parameters in phosphate: a case study on structurally constrained and flexible phosphate

  • Original language description

    A benchmark for structural interpretation of the P-31 NMR shift and the (2)J(P),(C) NMR spin-spin coupling in the phosphate group was obtained by means of theoretical calculations and NMR measurements in diethylphosphate (DEP) and 5,5-dimethyl-2-hydroxy-1,3,2-dioxaphosphinane 2-oxide (cDEP). The NMR parameters were calculated employing the B3LYP, BP86, BPW91, M06-2X, PBE0, KT2, KT3, MP2, and HF methods, and the 6-31+G(d), Iglo-n (n = II, III), cc-pVnZ (n = D, T, Q, 5), aug-cc-pVnZ (n = D, T and Q), and pcS-n and pcJ-n (n = 1, 2, 3, 4) bases, including the solvent effects described with explicit water molecules and/or the implicit Polarizable Continuum Model (PCM). The effect of molecular dynamics (MD) on NMR parameters was MD-calculated using the GAFF force field inclusive of explicit hydration with TIP3P water molecules. Both the optimal geometries and the dynamic behaviors of the DEP and cDEP phosphates differed notably, which allowed a reliable theoretical benchmark of the P-31 NMR parameters for highly flexible and structurally constrained phosphate in a one-to-one relationship with the corresponding experiment. The calculated P-31 NMR shifts were referenced employing three different NMR reference schemes to highlight the effect of the P-31 NMR reference on the accuracy of the calculated P-31 NMR shift. The relative Dd(P-31) NMR shift calculated employing the MD/B3LYP/Iglo-III/PCM method differed from the experiment by 0.16 ppm while the NMR shifts referenced to H3PO4 and/or PH3 deviated from the experiment notably more, which illustrated the superior applicability of the relative NMR reference scheme. The (2)J(P,C) coupling in DEP and cDEP calculated employing theMD/B3LYP/Iglo-III(DSO,PSO,SD)/cc-PV5Z(FC)/PCM method inclusive of correction due to explicit hydration differed from the experiment by 0.32 Hz and 0.15 Hz, respectively. The NMR calculations demonstrated that reliable structural interpretation of the P-31 NMR parameters in phosphate must involve both the structural and the dynamical components.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physical Chemistry Chemical Physics

  • ISSN

    1463-9076

  • e-ISSN

  • Volume of the periodical

    19

  • Issue of the periodical within the volume

    47

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    12

  • Pages from-to

    31830-31841

  • UT code for WoS article

    000417295800034

  • EID of the result in the Scopus database

    2-s2.0-85038407283