All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Converting Insulin-like Growth Factors 1 and 2 into High-Affinity Ligands for Insulin Receptor Isoform A by the Introduction of an Evolutionarily Divergent Mutation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F18%3A00489708" target="_blank" >RIV/61388963:_____/18:00489708 - isvavai.cz</a>

  • Alternative codes found

    RIV/68378050:_____/18:00489708

  • Result on the web

    <a href="https://pubs.acs.org/doi/10.1021/acs.biochem.7b01260" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.biochem.7b01260</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.biochem.7b01260" target="_blank" >10.1021/acs.biochem.7b01260</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Converting Insulin-like Growth Factors 1 and 2 into High-Affinity Ligands for Insulin Receptor Isoform A by the Introduction of an Evolutionarily Divergent Mutation

  • Original language description

    Insulin-like growth factors 1 and 2 (IGF-1 and -2, respectively) are protein hormones involved not only in normal growth and development but also in life span regulation and cancer. They exert their functions mainly through the IGF-1R or by binding to isoform A of the insulin receptor (IR-A). The development of IGF-1 and IGF-2 antagonists is of great clinical interest. Mutations of A4 and A8 sites of human insulin lead to disproportionate effects on hormone IR binding and activation. Here, we systematically modified IGF-1 sites 45, 46, and 49 and IGF-2 sites 45 and 48, which correspond, or are close, to insulin sites A4 and A8. The IGF-1R and IR-A binding and autophosphorylation potencies of these analogues were characterized. They retained the main IGF-1R-related properties, but the hormones with His49 in IGF-1 and His48 in IGF-2 showed significantly higher affinities for IR-A and for IR-B, being the strongest IGF-1- and IGF-2-like binders of these receptors ever reported. All analogues activated IR-A and IGF-1R without major discrepancies in their binding affinities. This study revealed that IR-A and IGF-1R contain specific sites, likely parts of their so-called sites 2', which can interact differently with specifically modified IGF analogues. Moreover, a clear importance of IGF-2 site 44 for effective hormone folding was also observed. These findings may facilitate novel and rational engineering of new hormone analogues for IR-A and IGF-1R studies and for potential medical applications.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10608 - Biochemistry and molecular biology

Result continuities

  • Project

    <a href="/en/project/GA15-19018S" target="_blank" >GA15-19018S: Towards molecular separation of metabolic and mitogenic effects of insulin and IGF-2</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Biochemistry

  • ISSN

    0006-2960

  • e-ISSN

  • Volume of the periodical

    57

  • Issue of the periodical within the volume

    16

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    2373-2382

  • UT code for WoS article

    000431088300011

  • EID of the result in the Scopus database

    2-s2.0-85045898101