Pyrrolidine nucleoside bisphosphonates as antituberculosis agents targeting hypoxanthine-guanine phosphoribosyltransferase
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F18%3A00498560" target="_blank" >RIV/61388963:_____/18:00498560 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.ejmech.2018.09.039" target="_blank" >http://dx.doi.org/10.1016/j.ejmech.2018.09.039</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejmech.2018.09.039" target="_blank" >10.1016/j.ejmech.2018.09.039</a>
Alternative languages
Result language
angličtina
Original language name
Pyrrolidine nucleoside bisphosphonates as antituberculosis agents targeting hypoxanthine-guanine phosphoribosyltransferase
Original language description
Therapeutic treatment of tuberculosis (TB) is becoming increasingly problematic due to the emergence of drug resistant Mycobacterium tuberculosis (Mt). Thus, new targets for anti-TB drug discovery need to be identified to combat and eradicate this disease. One such target is hypoxanthine-guanine phosphoribosyltransferase (HGPRT) which synthesises the 6-oxopurine nucleoside monophosphates essential for DNA/RNA production. [3R,4R]-4-Hypoxanthin-9-yl-3-( (S)-2-hydroxy-2-phosphonoethyl)oxy-1-N-(phosphonopropionyl)pyrrolidine and [3R,4R-4-guanin-9-yl-3-((S)-2-hydroxy-2-phosphonoethyl)oxy-1-N-(phosphonopropionyl)pyrrolidine (compound 6) are the most potent inhibitors of MtHGPRT yet discovered having K-i values of 60 nM. The crystal structure of the MtHGPRT.6 complex was obtained and compared with that of human HGPRT in complex with the same inhibitor. These structures provide explanations for the 60-fold difference in the inhibition constants between these two enzymes and a foundation for the design of next generation inhibitors. In addition, crystal structures of MtHGPRT in complex with two pyrrolidine nucleoside phosphosphonate inhibitors plus pyrophosphate provide insights into the final stage of the catalytic reaction. As the first step in ascertaining if such compounds have the potential to be developed as anti-TB therapeutics, the tetra-(ethyl L-phenylalanine) tetraamide prodrug of 6 was tested in cell based assays. This compound arrested the growth of virulent Mt not only in its replicating phase (IC50 of 14 mu M) but also in its latent phase (IC50 of 29 mu M). Furthermore, it arrested the growth of Mt in infected macrophages (MIC50 of 85 mu M) and has a low cytotoxicity in mammalian cells (CC50 of 132 +/- 20 mu M). These inhibitors are therefore viewed as forerunners of new anti-TB chemotherapeutics.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10401 - Organic chemistry
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
European Journal of Medicinal Chemistry
ISSN
0223-5234
e-ISSN
—
Volume of the periodical
159
Issue of the periodical within the volume
Nov 5
Country of publishing house
FR - FRANCE
Number of pages
13
Pages from-to
10-22
UT code for WoS article
000449237100002
EID of the result in the Scopus database
2-s2.0-85053812913