Liraglutide and a lipidized analog of prolactin-releasing peptide show neuroprotective effects in a mouse model of beta-amyloid pathology
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F19%3A00501446" target="_blank" >RIV/61388963:_____/19:00501446 - isvavai.cz</a>
Alternative codes found
RIV/67985823:_____/19:00504222 RIV/00216208:11110/19:10390014 RIV/00023001:_____/19:00077652 RIV/00064165:_____/19:10390014
Result on the web
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0028390818304258?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0028390818304258?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.neuropharm.2018.11.002" target="_blank" >10.1016/j.neuropharm.2018.11.002</a>
Alternative languages
Result language
angličtina
Original language name
Liraglutide and a lipidized analog of prolactin-releasing peptide show neuroprotective effects in a mouse model of beta-amyloid pathology
Original language description
Obesity and type 2 diabetes mellitus (T2DM) are important risk factors for Alzheimer's disease (AD). Drugs originally developed for T2DM treatment, e.g., analog of glucagon-like peptide 1 liraglutide, have shown neuroprotective effects in mouse models of AD. We previously examined the neuroprotective properties of palm(11)-PrRP31, an anorexigenic and glucose-lowering analog of prolactin-releasing peptide, in a mouse model of AD-like Tau pathology, THY-Tau22 mice. Here, we demonstrate the neuroprotective effects of palm(11)-PrRP31 in double transgenic APP/PS1 mice, a model of AD-like beta-amyloid (A beta) pathology. The 7-8-month-old APP/PS1 male mice were subcutaneously injected with liraglutide or palm(11)-PrRP31 for 2 months. Both the liraglutide and palm(11)-PrRP31 treatments reduced the A beta plaque load in the hippo campus. Palm(11)-PrRP31 also significantly reduced hippocampal microgliosis, consistent with our observations of a reduced A beta plaque load, and reduced cortical astrocytosis, similar to the treatment with liraglutide. Palm(11)-PrRP31 also tended to increase neurogenesis, as indicated by the number of doublecortin-positive cells in the hippocampus. After the treatment with both anorexigenic compounds, we observed a significant decrease in Tau phosphorylation at Thr231, one of the first epitopes phosphorylated in AD. This effect was probably caused by elevated activity of protein phosphatase 2A subunit C, the main Tau phosphatase. Both liraglutide and palm(11)-PrRP31 reduced the levels of caspase 3, which has multiple roles in the pathogenesis of AD. Palm(11)-PrRP31 increased protein levels of the pre-synaptic marker synaptophysin, suggesting that palm(11)-PrRP31 might help preserve synapses. These results indicate that palm(11)-PrRP31 has promising potential for the treatment of neurodegenerative diseases.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30103 - Neurosciences (including psychophysiology)
Result continuities
Project
<a href="/en/project/GA16-00918S" target="_blank" >GA16-00918S: Neuroprotective effects of novel analogs of anorexigenic prolactin-releasing peptide (PrRP) in mouse models of neurodegeneration and obesity</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Neuropharmacology
ISSN
0028-3908
e-ISSN
—
Volume of the periodical
144
Issue of the periodical within the volume
Jan
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
11
Pages from-to
377-387
UT code for WoS article
000454374900036
EID of the result in the Scopus database
2-s2.0-85057156355