All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Surface termination of MgB2 unveiled by a combination of adsorption experiments and theoretical calculations

Result description

Superconductivity in polycrystalline and thin-film MgB2 is strongly affected by the termination of its surface, but a reliable determination of the surface termination is still a challenging task of surface chemistry. Here, the surface properties of superconducting MgB2 were investigated using a combination of inverse gas chromatography and van der Waals corrected density functional theory calculations. The dispersive surface energy was measured as a function of the surface coverage and its value (58 mJ m(-2) to 48 mJ m(-2)) was verified by high-level non-local EXX + RPA calculations, which predicted that the dispersive contribution to the cleavage energy was 56 mJ m(-2). The isosteric adsorption enthalpies of cyclohexane, dioxane, acetone and acetonitrile molecules were measured on an MgB2 sample and compared to the DFT calculated enthalpies for the Mg-terminated MgB2, B-terminated MgB2 and MgO(001) surfaces. The close agreement between theory and experiment for the Mg-terminated surface suggested that the magnesium termination is the dominant surface phase of MgB2. Thus, combining inverse gas chromatography experiments with theoretical calculations may provide information about the surface termination.

Keywords

organic moleculesenergy sitesgraphene

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Surface termination of MgB2 unveiled by a combination of adsorption experiments and theoretical calculations

  • Original language description

    Superconductivity in polycrystalline and thin-film MgB2 is strongly affected by the termination of its surface, but a reliable determination of the surface termination is still a challenging task of surface chemistry. Here, the surface properties of superconducting MgB2 were investigated using a combination of inverse gas chromatography and van der Waals corrected density functional theory calculations. The dispersive surface energy was measured as a function of the surface coverage and its value (58 mJ m(-2) to 48 mJ m(-2)) was verified by high-level non-local EXX + RPA calculations, which predicted that the dispersive contribution to the cleavage energy was 56 mJ m(-2). The isosteric adsorption enthalpies of cyclohexane, dioxane, acetone and acetonitrile molecules were measured on an MgB2 sample and compared to the DFT calculated enthalpies for the Mg-terminated MgB2, B-terminated MgB2 and MgO(001) surfaces. The close agreement between theory and experiment for the Mg-terminated surface suggested that the magnesium termination is the dominant surface phase of MgB2. Thus, combining inverse gas chromatography experiments with theoretical calculations may provide information about the surface termination.

  • Czech name

  • Czech description

Classification

  • Type

    Jimp - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physical Chemistry Chemical Physics

  • ISSN

    1463-9076

  • e-ISSN

  • Volume of the periodical

    21

  • Issue of the periodical within the volume

    14

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    8

  • Pages from-to

    7313-7320

  • UT code for WoS article

    000464580600006

  • EID of the result in the Scopus database

    2-s2.0-85064014395

Basic information

Result type

Jimp - Article in a specialist periodical, which is included in the Web of Science database

Jimp

OECD FORD

Physical chemistry

Year of implementation

2019