All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Overbinding and Qualitative and Quantitative Changes Caused by Simple Na+ and K+ Ions in Polyelectrolyte Simulations: Comparison of Force Fields with and without NBFIX and ECC Corrections

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F20%3A00519393" target="_blank" >RIV/61388963:_____/20:00519393 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.acs.org/doi/10.1021/acs.jctc.9b00813" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jctc.9b00813</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jctc.9b00813" target="_blank" >10.1021/acs.jctc.9b00813</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Overbinding and Qualitative and Quantitative Changes Caused by Simple Na+ and K+ Ions in Polyelectrolyte Simulations: Comparison of Force Fields with and without NBFIX and ECC Corrections

  • Original language description

    Overbinding of ions is a common and well-known problem in classical molecular dynamics simulations. One of its main causes is the absence of electronic polarizability in the force fields. The current approaches for minimizing overbinding typically either retain the original charges and use an ad hoc readjustment of the Lennard-Jones parameters as done in the nonbonded fix (NBFIX) approach or rescale the charges using a theoretical framework. The goal in the latter is to include shielding produced by the missing electronic polarizability as done in the electronic continuum correction (ECC) approach. NBFIX and ECC are the most common corrections, and we compare their performance to the default parameterizations provided by five different commonly used biomolecular force fields, OPLS-AA/L, CHARMM27, CHARMM36m, CHARMM22*, and AMBER99SB-ILDN. As test systems, we use poly-α,L-glutamic and poly-α,L-aspartic amino acid molecules in explicit water together with Na+ and K+ counterions. We demonstrate that the different force fields yield results that are not only quantitatively but also qualitatively different. The resulting structures of the macroions depend strongly on the model for ions. NBFIX corrections alleviate the problem of overbinding, resulting in extended peptides. The ECC corrections depend nontrivially on the original underlying model, and despite being based on a theoretical framework, they cannot always solve the problem.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/GX19-26854X" target="_blank" >GX19-26854X: Concert of lipids, ions, and proteins in cell membrane dynamics and function</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Chemical Theory and Computation

  • ISSN

    1549-9618

  • e-ISSN

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

    677-687

  • UT code for WoS article

    000508474800053

  • EID of the result in the Scopus database

    2-s2.0-85076565536